留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镍 ZnFe2O4 复合材料的制备及其除藻性能

邓冬祝 李铃 曹传麒 廖丹伶 莫创荣 许雪棠

邓冬祝, 李铃, 曹传麒, 等. 掺镍 ZnFe2O4 复合材料的制备及其除藻性能[J]. 复合材料学报, 2024, 41(8): 4160-4170. doi: 10.13801/j.cnki.fhclxb.20231215.003
引用本文: 邓冬祝, 李铃, 曹传麒, 等. 掺镍 ZnFe2O4 复合材料的制备及其除藻性能[J]. 复合材料学报, 2024, 41(8): 4160-4170. doi: 10.13801/j.cnki.fhclxb.20231215.003
DENG Dongzhu, LI Ling, CAO Chuanqi, et al. Preparation of nickel-doped ZnFe2O4 composites and their algal removal properties[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4160-4170. doi: 10.13801/j.cnki.fhclxb.20231215.003
Citation: DENG Dongzhu, LI Ling, CAO Chuanqi, et al. Preparation of nickel-doped ZnFe2O4 composites and their algal removal properties[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4160-4170. doi: 10.13801/j.cnki.fhclxb.20231215.003

掺镍 ZnFe2O4 复合材料的制备及其除藻性能

doi: 10.13801/j.cnki.fhclxb.20231215.003
基金项目: 国家自然科学基金 (22065003)
详细信息
    通讯作者:

    莫创荣,博士,副教授,硕士生导师,研究方向为高级氧化 E-mail: mochuangrong@163.com

  • 中图分类号: X524;TB332

Preparation of nickel-doped ZnFe2O4 composites and their algal removal properties

Funds: National Natural Science Foundation of China (22065003)
  • 摘要: 水体富营养化导致的有害藻华(HABs)爆发日益严重,对水环境和人类健康构成了巨大的威胁。本文采用简单的水热法制备了磁性可回收的镍掺杂 ZnFe2O4 (Ni-ZFO)吸附剂,用于去除水体中的铜绿微囊藻。通过 SEM、XRD、EDS、XPS 和振动样品磁力计(VSM)对材料进行了表征。在 30 min内,Ni-ZFO 复合材料的藻细胞去除率最高可达 99.09%,在 25℃、pH= 3~8 的条件下,去除率保持在 90.41% 以上。此外,Ni-ZFO的饱和磁化强度为67.93 emu/g,比ZnFe2O4 (ZFO)高10.74 emu/g,便于回收利用。吸附过程中藻胆蛋白含量并未增加,藻细胞在吸附过程中不会破裂,这就避免了藻毒素进入水环境而造成的二次污染。经过4次循环使用后除藻率仍保持在75%以上。本文合成的 Ni-ZFO 吸附剂对藻细胞具有较强的去除效率,且不会造成二次污染,在缓解水体富营养化的实际应用中显示出巨大的潜力,同时也充实了改性ZFO在吸附领域的应用。

     

  • 图  1  ZnFe2O4 (ZFO) ((a), (b))和Ni-ZFO ((c), (d))的SEM图像;((e)~(h)) 元素O、Fe、Ni、Zn的 EDS 图谱

    Figure  1.  SEM images of the ZnFe2O4 (ZFO) ((a), (b)) and Ni-ZFO ((c), (d)); ((e)-(h)) EDS patterns of elements O, Fe, Ni, Zn

    图  2  ZFO、Ni-ZFO 的 XRD 图谱

    Figure  2.  XRD patterns of ZFO, Ni-ZFO

    图  3  Ni-ZFO 使用前后的傅里叶变换红外图谱

    Figure  3.  FTIR spectra of Ni-ZFO before and after use

    图  4  Ni-ZFO 的XPS 图谱:(a)总谱;(b) C1s;(c) O1s;(d) Fe2p;(e) Ni2p;(f) Zn2p

    sat.—Satellite peak

    Figure  4.  XPS spectra of Ni-ZFO: (a) Survey; (b) C1s; (c) O1s; (d) Fe2p; (e) Ni2p; (f) Zn2p

    图  5  ZFO、Ni-ZFO 的磁滞回归线

    Figure  5.  Hysteresis regression line of ZFO, Ni-ZFO

    图  6  Ni-ZFO (a)、ZFO (b)的氮吸附-解吸和孔径分布

    dV/dD—Pore volume per unit pore size

    Figure  6.  Nitrogen adsorption-desorption and pore size distribution of Ni-ZFO (a), ZFO (b)

    图  7  (a) Ni-ZFO 、ZFO除藻率对比;(b) Ni-ZFO 吸附剂用量对除藻率的影响;(c) pH 对Ni-ZFO除藻率的影响;(d) 藻密度对Ni-ZFO除藻率的影响;(e) 温度对Ni-ZFO除藻率的影响;(f) 转速对Ni-ZFO除藻率的影响

    C/C0—Algal density at a time/the initial algal density

    Figure  7.  (a) Comparison of algal removal rates of Ni-ZFO and ZFO; (b) Effect of Ni-ZFO adsorbent dosage on algae removal rate; (c) Effect of pH on the algae removal rate of Ni-ZFO; (d) Effect of algae density on the algae removal rate of Ni-ZFO; (e) Effect of temperature on the algae removal rate of Ni-ZFO; (f) Effect of speed on the algae removal rate of Ni-ZFO

    图  8  除藻过程中藻细胞溶液在620 nm波长处的值

    OD620—Light absorption at 620 nm

    Figure  8.  Value of algal cell solution at 620 nm during algae removal

    图  9  Ni-ZFO吸附后藻絮体液态SEM图像

    Figure  9.  SEM images of the liquid state of algal flocs after Ni-ZFO adsorption

    图  10  (a) Ni-ZFO的阴离子干扰实验;(b) Ni-ZFO的循环实验

    Figure  10.  (a) Anion interference experiment of Ni-ZFO; (b) Cycle experiment of Ni-ZFO

    图  11  Ni-ZFO的Zeta电位图

    Figure  11.  Zeta potential diagram of Ni-ZFO

  • [1] YEMA L, LITCHMAN E, DE TEZANOS PINTO P. The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria[J]. Harmful Algae, 2016, 60: 131-138. doi: 10.1016/j.hal.2016.11.007
    [2] SARAF S R, FRENKEL A, HARKE M J, et al. Effects of microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured microcystis and microcystin-LR[J]. Aquatic Toxicology, 2018, 194: 18-26. doi: 10.1016/j.aquatox.2017.10.026
    [3] CHEN Y, XIE P, WANG Z, et al. UV/persulfate preoxidation to improve coagulation efficiency of microcystis aeruginosa[J]. Journal of Hazardous Materials, 2017, 322: 508-515. doi: 10.1016/j.jhazmat.2016.10.017
    [4] ZHANG W, XIN H, CHEN J, et al. Photocatalytic degradation of methyl orange on La-In co-doped TiO2[J]. Current Nanoscience, 2014, 10(4): 582-587. doi: 10.2174/1573413710666140124205732
    [5] ZHANG M, WANG Y, WANG Y, et al. Efficient elimination and re-growth inhibition of harmful bloom-forming cyanobacteria using surface-functionalized microbubbles[J]. Water Research (Oxford), 2019, 161: 473-485. doi: 10.1016/j.watres.2019.06.035
    [6] SUN S, TANG Q, ZHOU L, et al. Exploring the photocatalytic inactivation mechanism of microcystis aeruginosa under visible light using Ag3PO4/g-C3N4[J]. Environmental Science and Pollution Research International, 2022, 29(20): 29993-30003. doi: 10.1007/s11356-021-17857-w
    [7] BOUAÏCHA N, MILES C, BEACH D, et al. Structural diversity, characterization and toxicology of microcystins[J]. Toxins, 2019, 11(12): 714. doi: 10.3390/toxins11120714
    [8] CODD G A. Cyanobacterial toxins: Occurrence, properties and biological significance[J]. Water Science and Technology, 1995, 32(4): 149-156. doi: 10.2166/wst.1995.0177
    [9] GALLARDO RODRÍGUEZ J J, ASTUYA VILLALÓN A, LLANOS RIVERA A, et al. A critical review on control methods for harmful algal blooms[J]. Reviews in Aquaculture, 2019, 11(3): 661-684. doi: 10.1111/raq.12251
    [10] 徐园园, 郑宇, 田啸, 等. 壳聚糖/浮石浮上式复合除藻材料的制备及其除藻性能和除藻机制[J]. 复合材料学报. 2022, 39(3): 1300-1307.

    XU Yuanyuan, ZHENG Yu, TIAN Xiao, et al. Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1300-1307(in Chinese).
    [11] QU F, DU X, LIU B, et al. Control of ultrafiltration membrane fouling caused by microcystis cells with permanganate preoxidation significance of in situ formed manganese dioxide[J]. Chemical Engineering Journal, 2015, 279: 56-65. doi: 10.1016/j.cej.2015.05.009
    [12] CHANG S C. Effective removal of microcystis aeruginosa and microcystin-LR using nanosilicate platelets[J]. Chemosphere, 2014, 99: 49-55. doi: 10.1016/j.chemosphere.2013.09.036
    [13] OU H, GAO N, DENG Y, et al. Mechanistic studies of microcystic aeruginosa inactivation and degradation by UV-C irradiation and chlorination with poly-synchronous analyses[J]. Desalination, 2011, 272(1-3): 107-119. doi: 10.1016/j.desal.2011.01.014
    [14] FAN G, DU B, ZHOU J, et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of microcystis aeruginosa under visible light[J]. Chemical Engineering Journal, 2021, 404: 126509.
    [15] SERRÀ A, PIP P, GÓMEZ E, et al. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins[J]. Applied Catalysis B: Environmental, 2020, 268: 118745. doi: 10.1016/j.apcatb.2020.118745
    [16] FAN G, CHEN Z, GU S, et al. Self-floating photocatalytic hydrogel for efficient removal of microcystis aeruginosa and degradation of microcystins-LR[J]. Chemosphere, 2021, 284: 131283. doi: 10.1016/j.chemosphere.2021.131283
    [17] YANG X, YAO L, WANG Y, et al. Simultaneous removal of algae, microcystins and disinfection byproduct precursors by peroxymonosulfate (PMS)-enhanced Fe(III) coagulation[J]. Chemical Engineering Journal, 2022, 445: 136689. doi: 10.1016/j.cej.2022.136689
    [18] KIM B, LEE J, HWANG S. Removal of cyanobacteria and microcystin by natural plant-mineral combinations in eutrophic waters[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(2): 216-221. doi: 10.1007/s00128-012-0904-4
    [19] HABIBI M K, RAFIAEI S M, ALHAJI A, et al. Synthesis of ZnFe2O4∶1wt%Ce3+/carbon fibers composite and investigation of its adsorption characteristic to remove Congo red dye from aqueous solutions[J]. Journal of Alloys and Compounds, 2022, 890: 161901. doi: 10.1016/j.jallcom.2021.161901
    [20] SARMA G K, SHARMA R, SAIKIA R, et al. Facile synthesis of chitosan-modified ZnO/ZnFe2O4 nanocomposites for effective remediation of groundwater fluoride[J]. Environmental Science and Pollution Research International, 2020, 27(24): 30067-30080. doi: 10.1007/s11356-020-09270-6
    [21] APPIAH-NTIAMOAH R, BAYE A F, GADISA B T, et al. In-situ prepared ZnO-ZnFe2O4 with 1D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment[J]. Journal of Hazardous Materials, 2019, 373: 459-467.
    [22] LIN Z, CHEN J. Magnetic Fe3O4@MgAl-LDH@La(OH)3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release[J]. Chemosphere, 2021, 264: 128551. doi: 10.1016/j.chemosphere.2020.128551
    [23] FAN G, LIN X, YOU Y, et al. Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of microcystis aeruginosa: Characterization, performance and mechanism[J]. Journal of Hazardous Materials, 2022, 421: 126703. doi: 10.1016/j.jhazmat.2021.126703
    [24] JETHAVE G, FEGADE U, ATTARDE S, et al. Exploration of the adsorption capability by doping Pb@ZnFe2O4 nanocomposites (NCs) for decontamination of dye from textile wastewater[J]. Heliyon, 2019, 5(9): e2412.
    [25] KONICKI W, SIBER D, NARKIEWICZ U. Removal of rhodamine B from aqueous solution by ZnFe2O4 nanocomposite with magnetic separation performance[J]. Polish Journal of Chemical Technology, 2017, 19(4): 65-74. doi: 10.1515/pjct-2017-0069
    [26] ZHAO H, CHEN Z, TAO L, et al. In vitro toxicity evaluation of ultra-small MFe2O4 (M=Fe, Mn, Co) nanoparticles using A549 cells[J]. RSC Advances, 2015, 5(84): 68454-68460. doi: 10.1039/C5RA11013K
    [27] YALCIN B, OZCELIK S, ICIN K, et al. Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles[J]. Journal of Materials Science, Materials in Electronics, 2021, 32(10): 13068-13080. doi: 10.1007/s10854-021-05752-6
    [28] GORGIZADEH M, AZARPIRA N, LOTFI M, et al. Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: In vitro and in vivo studies[J]. Photodiagnosis and Photodynamic Therapy, 2019, 27: 27-33.
    [29] NIGAM A, PAWAR S J. Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications[J]. Ceramics International, 2020, 46(4): 4058-4064. doi: 10.1016/j.ceramint.2019.10.243
    [30] 付晓雨, 毕菲, 李运成, 等. 铁酸锌基复合材料在各领域的研究现状[J]. 化工技术与开发, 2022, 51(4): 35-39.

    FU Xiaoyu, BI Fei, LI Yuncheng, et al. Current research status of zinc ferrate based composites in various fields[J]. Technology & Development of Chemical Industry, 2022, 51(4): 35-39(in Chinese).
    [31] HU X, GUAN P, YAN X. Hydrothermal synthesis of nano-meter microporous zinc ferrite[J]. China Particuology, 2004, 2(3): 135-137. doi: 10.1016/S1672-2515(07)60040-2
    [32] EL-SALAMONY R A, ABOUTALEB W A, DHMEES A S. Photodegradation of amido black 10b dye under visible light using Ni and Zn ferrite catalysts prepared by a simple modified sol-gel method[J]. Arabian Journal for Science and Engineering, 2023, 48(6): 7661-7672. doi: 10.1007/s13369-023-07676-1
    [33] GU W, XIE Q, QI C, et al. Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique[J]. Powder Technology, 2016, 301: 723-729. doi: 10.1016/j.powtec.2016.07.015
    [34] SUNDARARAJAN M, SUKUMAR M, DASH C S, et al. A comparative study on NiFe2O4 and ZnFe2O4 spinel nanoparticles: Structural, surface chemistry, optical, morphology and magnetic studies[J]. Physica B: Condensed Matter, 2022, 644: 414232. doi: 10.1016/j.physb.2022.414232
    [35] HASSANZADEH-AFRUZI F, ESMAILZADEH F, HEIDARI G, et al. Arabic gum-grafted-hydrolyzed polyacrylonitrile@ZnFe2O4 as a magnetic adsorbent for remediation of levofloxacin antibiotic from aqueous solutions[J]. ACS Omega, 2023, 8(7): 6337-6348. doi: 10.1021/acsomega.2c06555
    [36] CHEN X, DAI Y, LIU T, et al. Magnetic core-shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2015, 409: 198-206. doi: 10.1016/j.molcata.2015.08.021
    [37] ZHU F, LIU Y, YAN M, et al. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2018, 512: 419-427. doi: 10.1016/j.jcis.2017.09.093
    [38] ACHARYA J, RAJ B G S, KO T H, et al. Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3073-3085. doi: 10.1016/j.ijhydene.2019.11.169
    [39] LI S, ZHANG Y, HAN L, et al. Hierarchical kiwifruit-like ZnO/ZnFe2O4 heterostructure for high-sensitive triethylamine gaseous sensor[J]. Sensors and Actuators B:Chemical, 2021, 344: 130251. doi: 10.1016/j.snb.2021.130251
    [40] WANG H, FU Y, LIU X, et al. Snowball flower-like g-C3N4/ZnFe2O4 mesoporous hollow microspheres with enhanced triethylamine sensing properties[J]. Sensors and Actuators B: Chemical, 2023, 377: 132796. doi: 10.1016/j.snb.2022.132796
    [41] GAO M, LE K, XU D, et al. Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2019, 804: 27-34.
    [42] ACHARYA J, PANT B, PRASAD OJHA G, et al. Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe2O4@NiMoO4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance[J]. Journal of Colloid and Interface Science, 2022, 610: 863-878. doi: 10.1016/j.jcis.2021.11.129
    [43] SUN L, SHAO R, TANG L, et al. Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation[J]. Journal of Alloys and Compounds, 2013, 564: 55-62. doi: 10.1016/j.jallcom.2013.02.147
    [44] LI H, ZENG Z, ZHANG J, et al. Atomic-scale imaging of dopant sites in a Ni-doped ideal normal spinel ZnFe2O4 nanofiber and its correlated magnetism origin[J]. The Journal of Physical Chemistry C, 2022, 126(16): 7326-7336. doi: 10.1021/acs.jpcc.2c01398
    [45] KOVALESKI G, KHOLANY M, DIAS L M S, et al. Extraction and purification of phycobiliproteins from algae and their applications[J]. Frontiers in Chemistry, 2022, 10: 1065355. doi: 10.3389/fchem.2022.1065355
    [46] MANIRAFASHA E, NDIKUBWIMANA T, ZENG X, et al. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent[J]. Biochemical Engineering Journal, 2016, 109: 282-296. doi: 10.1016/j.bej.2016.01.025
    [47] JOO J, YE Y, KIM D, et al. Magnetically recoverable hybrid TiO2 nanocrystal clusters with enhanced photocatalytic activity[J]. Materials Letters, 2013, 93: 141-144. doi: 10.1016/j.matlet.2012.10.067
    [48] SALAWUDEEN A O, TAWABINI B S, AL-SHAIBANI A M, et al. Poly(2-hydroxyethyl methacrylate) grafted graphene oxide for cadmium removal from water with interaction mechanisms[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100288.
  • 加载中
图(11)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  107
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2023-11-27
  • 录用日期:  2023-12-01
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回