Preparation of nickel-doped ZnFe2O4 composites and their algal removal properties
-
摘要: 水体富营养化导致的有害藻华(HABs)爆发日益严重,对水环境和人类健康构成了巨大的威胁。本文采用简单的水热法制备了磁性可回收的镍掺杂 ZnFe2O4 (Ni-ZFO)吸附剂,用于去除水体中的铜绿微囊藻。通过 SEM、XRD、EDS、XPS 和振动样品磁力计(VSM)对材料进行了表征。在 30 min内,Ni-ZFO 复合材料的藻细胞去除率最高可达 99.09%,在 25℃、pH= 3~8 的条件下,去除率保持在 90.41% 以上。此外,Ni-ZFO的饱和磁化强度为67.93 emu/g,比ZnFe2O4 (ZFO)高10.74 emu/g,便于回收利用。吸附过程中藻胆蛋白含量并未增加,藻细胞在吸附过程中不会破裂,这就避免了藻毒素进入水环境而造成的二次污染。经过4次循环使用后除藻率仍保持在75%以上。本文合成的 Ni-ZFO 吸附剂对藻细胞具有较强的去除效率,且不会造成二次污染,在缓解水体富营养化的实际应用中显示出巨大的潜力,同时也充实了改性ZFO在吸附领域的应用。Abstract: Harmful algal blooms (HABs) outbreaks due to eutrophication of water bodies are becoming increasingly serious, posing a great threat to the water environment and human health. In this paper, magnetic and recoverable nickel-doped ZnFe2O4 (Ni-ZFO) adsorbents were prepared by a simple hydrothermal method for the removal of microcystis aeruginosa from water bodies. The materials were characterized by SEM, XRD, EDS, XPS and vibrating sample magnetometer (VSM). The algal cell removal of Ni-ZFO composites was up to 99.09% within 30 min and remained above 90.41% at 25℃ and pH=3-8. In addition, the saturation magnetization intensity of Ni-ZFO was 67.93 emu/g, which was 10.74 emu/g higher than that of ZnFe2O4 (ZFO), and it was easy to be recycled. The content of algal bile proteins did not increase in the adsorption process, and the algal cells would not be ruptured during the adsorption process, which avoids the secondary pollution caused by Microcystins entering the water environment. The algal removal rate remained above 75% after four times of recycling. The Ni-ZFO adsorbent synthesized in this paper has strong removal efficiency for algal cells and does not cause secondary pollution, which shows great potential in the practical application of mitigating eutrophication of water bodies, and also enriches the application of modified ZFO in the field of adsorption.
-
Key words:
- microcystis aeruginosa /
- zinc ferrate /
- adsorption /
- algal removal /
- composites /
- eutrophicatio
-
图 7 (a) Ni-ZFO 、ZFO除藻率对比;(b) Ni-ZFO 吸附剂用量对除藻率的影响;(c) pH 对Ni-ZFO除藻率的影响;(d) 藻密度对Ni-ZFO除藻率的影响;(e) 温度对Ni-ZFO除藻率的影响;(f) 转速对Ni-ZFO除藻率的影响
C/C0—Algal density at a time/the initial algal density
Figure 7. (a) Comparison of algal removal rates of Ni-ZFO and ZFO; (b) Effect of Ni-ZFO adsorbent dosage on algae removal rate; (c) Effect of pH on the algae removal rate of Ni-ZFO; (d) Effect of algae density on the algae removal rate of Ni-ZFO; (e) Effect of temperature on the algae removal rate of Ni-ZFO; (f) Effect of speed on the algae removal rate of Ni-ZFO
-
[1] YEMA L, LITCHMAN E, DE TEZANOS PINTO P. The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria[J]. Harmful Algae, 2016, 60: 131-138. doi: 10.1016/j.hal.2016.11.007 [2] SARAF S R, FRENKEL A, HARKE M J, et al. Effects of microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured microcystis and microcystin-LR[J]. Aquatic Toxicology, 2018, 194: 18-26. doi: 10.1016/j.aquatox.2017.10.026 [3] CHEN Y, XIE P, WANG Z, et al. UV/persulfate preoxidation to improve coagulation efficiency of microcystis aeruginosa[J]. Journal of Hazardous Materials, 2017, 322: 508-515. doi: 10.1016/j.jhazmat.2016.10.017 [4] ZHANG W, XIN H, CHEN J, et al. Photocatalytic degradation of methyl orange on La-In co-doped TiO2[J]. Current Nanoscience, 2014, 10(4): 582-587. doi: 10.2174/1573413710666140124205732 [5] ZHANG M, WANG Y, WANG Y, et al. Efficient elimination and re-growth inhibition of harmful bloom-forming cyanobacteria using surface-functionalized microbubbles[J]. Water Research (Oxford), 2019, 161: 473-485. doi: 10.1016/j.watres.2019.06.035 [6] SUN S, TANG Q, ZHOU L, et al. Exploring the photocatalytic inactivation mechanism of microcystis aeruginosa under visible light using Ag3PO4/g-C3N4[J]. Environmental Science and Pollution Research International, 2022, 29(20): 29993-30003. doi: 10.1007/s11356-021-17857-w [7] BOUAÏCHA N, MILES C, BEACH D, et al. Structural diversity, characterization and toxicology of microcystins[J]. Toxins, 2019, 11(12): 714. doi: 10.3390/toxins11120714 [8] CODD G A. Cyanobacterial toxins: Occurrence, properties and biological significance[J]. Water Science and Technology, 1995, 32(4): 149-156. doi: 10.2166/wst.1995.0177 [9] GALLARDO RODRÍGUEZ J J, ASTUYA VILLALÓN A, LLANOS RIVERA A, et al. A critical review on control methods for harmful algal blooms[J]. Reviews in Aquaculture, 2019, 11(3): 661-684. doi: 10.1111/raq.12251 [10] 徐园园, 郑宇, 田啸, 等. 壳聚糖/浮石浮上式复合除藻材料的制备及其除藻性能和除藻机制[J]. 复合材料学报. 2022, 39(3): 1300-1307.XU Yuanyuan, ZHENG Yu, TIAN Xiao, et al. Study on the preparation of chitosan-pumice floating composite material for removing algae and its performance and mechanism of removing algae[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1300-1307(in Chinese). [11] QU F, DU X, LIU B, et al. Control of ultrafiltration membrane fouling caused by microcystis cells with permanganate preoxidation significance of in situ formed manganese dioxide[J]. Chemical Engineering Journal, 2015, 279: 56-65. doi: 10.1016/j.cej.2015.05.009 [12] CHANG S C. Effective removal of microcystis aeruginosa and microcystin-LR using nanosilicate platelets[J]. Chemosphere, 2014, 99: 49-55. doi: 10.1016/j.chemosphere.2013.09.036 [13] OU H, GAO N, DENG Y, et al. Mechanistic studies of microcystic aeruginosa inactivation and degradation by UV-C irradiation and chlorination with poly-synchronous analyses[J]. Desalination, 2011, 272(1-3): 107-119. doi: 10.1016/j.desal.2011.01.014 [14] FAN G, DU B, ZHOU J, et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of microcystis aeruginosa under visible light[J]. Chemical Engineering Journal, 2021, 404: 126509. [15] SERRÀ A, PIP P, GÓMEZ E, et al. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins[J]. Applied Catalysis B: Environmental, 2020, 268: 118745. doi: 10.1016/j.apcatb.2020.118745 [16] FAN G, CHEN Z, GU S, et al. Self-floating photocatalytic hydrogel for efficient removal of microcystis aeruginosa and degradation of microcystins-LR[J]. Chemosphere, 2021, 284: 131283. doi: 10.1016/j.chemosphere.2021.131283 [17] YANG X, YAO L, WANG Y, et al. Simultaneous removal of algae, microcystins and disinfection byproduct precursors by peroxymonosulfate (PMS)-enhanced Fe(III) coagulation[J]. Chemical Engineering Journal, 2022, 445: 136689. doi: 10.1016/j.cej.2022.136689 [18] KIM B, LEE J, HWANG S. Removal of cyanobacteria and microcystin by natural plant-mineral combinations in eutrophic waters[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(2): 216-221. doi: 10.1007/s00128-012-0904-4 [19] HABIBI M K, RAFIAEI S M, ALHAJI A, et al. Synthesis of ZnFe2O4∶1wt%Ce3+/carbon fibers composite and investigation of its adsorption characteristic to remove Congo red dye from aqueous solutions[J]. Journal of Alloys and Compounds, 2022, 890: 161901. doi: 10.1016/j.jallcom.2021.161901 [20] SARMA G K, SHARMA R, SAIKIA R, et al. Facile synthesis of chitosan-modified ZnO/ZnFe2O4 nanocomposites for effective remediation of groundwater fluoride[J]. Environmental Science and Pollution Research International, 2020, 27(24): 30067-30080. doi: 10.1007/s11356-020-09270-6 [21] APPIAH-NTIAMOAH R, BAYE A F, GADISA B T, et al. In-situ prepared ZnO-ZnFe2O4 with 1D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment[J]. Journal of Hazardous Materials, 2019, 373: 459-467. [22] LIN Z, CHEN J. Magnetic Fe3O4@MgAl-LDH@La(OH)3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release[J]. Chemosphere, 2021, 264: 128551. doi: 10.1016/j.chemosphere.2020.128551 [23] FAN G, LIN X, YOU Y, et al. Magnetically separable ZnFe2O4/Ag3PO4/g-C3N4 photocatalyst for inactivation of microcystis aeruginosa: Characterization, performance and mechanism[J]. Journal of Hazardous Materials, 2022, 421: 126703. doi: 10.1016/j.jhazmat.2021.126703 [24] JETHAVE G, FEGADE U, ATTARDE S, et al. Exploration of the adsorption capability by doping Pb@ZnFe2O4 nanocomposites (NCs) for decontamination of dye from textile wastewater[J]. Heliyon, 2019, 5(9): e2412. [25] KONICKI W, SIBER D, NARKIEWICZ U. Removal of rhodamine B from aqueous solution by ZnFe2O4 nanocomposite with magnetic separation performance[J]. Polish Journal of Chemical Technology, 2017, 19(4): 65-74. doi: 10.1515/pjct-2017-0069 [26] ZHAO H, CHEN Z, TAO L, et al. In vitro toxicity evaluation of ultra-small MFe2O4 (M=Fe, Mn, Co) nanoparticles using A549 cells[J]. RSC Advances, 2015, 5(84): 68454-68460. doi: 10.1039/C5RA11013K [27] YALCIN B, OZCELIK S, ICIN K, et al. Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles[J]. Journal of Materials Science, Materials in Electronics, 2021, 32(10): 13068-13080. doi: 10.1007/s10854-021-05752-6 [28] GORGIZADEH M, AZARPIRA N, LOTFI M, et al. Sonodynamic cancer therapy by a nickel ferrite/carbon nanocomposite on melanoma tumor: In vitro and in vivo studies[J]. Photodiagnosis and Photodynamic Therapy, 2019, 27: 27-33. [29] NIGAM A, PAWAR S J. Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications[J]. Ceramics International, 2020, 46(4): 4058-4064. doi: 10.1016/j.ceramint.2019.10.243 [30] 付晓雨, 毕菲, 李运成, 等. 铁酸锌基复合材料在各领域的研究现状[J]. 化工技术与开发, 2022, 51(4): 35-39.FU Xiaoyu, BI Fei, LI Yuncheng, et al. Current research status of zinc ferrate based composites in various fields[J]. Technology & Development of Chemical Industry, 2022, 51(4): 35-39(in Chinese). [31] HU X, GUAN P, YAN X. Hydrothermal synthesis of nano-meter microporous zinc ferrite[J]. China Particuology, 2004, 2(3): 135-137. doi: 10.1016/S1672-2515(07)60040-2 [32] EL-SALAMONY R A, ABOUTALEB W A, DHMEES A S. Photodegradation of amido black 10b dye under visible light using Ni and Zn ferrite catalysts prepared by a simple modified sol-gel method[J]. Arabian Journal for Science and Engineering, 2023, 48(6): 7661-7672. doi: 10.1007/s13369-023-07676-1 [33] GU W, XIE Q, QI C, et al. Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique[J]. Powder Technology, 2016, 301: 723-729. doi: 10.1016/j.powtec.2016.07.015 [34] SUNDARARAJAN M, SUKUMAR M, DASH C S, et al. A comparative study on NiFe2O4 and ZnFe2O4 spinel nanoparticles: Structural, surface chemistry, optical, morphology and magnetic studies[J]. Physica B: Condensed Matter, 2022, 644: 414232. doi: 10.1016/j.physb.2022.414232 [35] HASSANZADEH-AFRUZI F, ESMAILZADEH F, HEIDARI G, et al. Arabic gum-grafted-hydrolyzed polyacrylonitrile@ZnFe2O4 as a magnetic adsorbent for remediation of levofloxacin antibiotic from aqueous solutions[J]. ACS Omega, 2023, 8(7): 6337-6348. doi: 10.1021/acsomega.2c06555 [36] CHEN X, DAI Y, LIU T, et al. Magnetic core-shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2015, 409: 198-206. doi: 10.1016/j.molcata.2015.08.021 [37] ZHU F, LIU Y, YAN M, et al. Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2018, 512: 419-427. doi: 10.1016/j.jcis.2017.09.093 [38] ACHARYA J, RAJ B G S, KO T H, et al. Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3073-3085. doi: 10.1016/j.ijhydene.2019.11.169 [39] LI S, ZHANG Y, HAN L, et al. Hierarchical kiwifruit-like ZnO/ZnFe2O4 heterostructure for high-sensitive triethylamine gaseous sensor[J]. Sensors and Actuators B:Chemical, 2021, 344: 130251. doi: 10.1016/j.snb.2021.130251 [40] WANG H, FU Y, LIU X, et al. Snowball flower-like g-C3N4/ZnFe2O4 mesoporous hollow microspheres with enhanced triethylamine sensing properties[J]. Sensors and Actuators B: Chemical, 2023, 377: 132796. doi: 10.1016/j.snb.2022.132796 [41] GAO M, LE K, XU D, et al. Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2019, 804: 27-34. [42] ACHARYA J, PANT B, PRASAD OJHA G, et al. Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe2O4@NiMoO4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance[J]. Journal of Colloid and Interface Science, 2022, 610: 863-878. doi: 10.1016/j.jcis.2021.11.129 [43] SUN L, SHAO R, TANG L, et al. Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation[J]. Journal of Alloys and Compounds, 2013, 564: 55-62. doi: 10.1016/j.jallcom.2013.02.147 [44] LI H, ZENG Z, ZHANG J, et al. Atomic-scale imaging of dopant sites in a Ni-doped ideal normal spinel ZnFe2O4 nanofiber and its correlated magnetism origin[J]. The Journal of Physical Chemistry C, 2022, 126(16): 7326-7336. doi: 10.1021/acs.jpcc.2c01398 [45] KOVALESKI G, KHOLANY M, DIAS L M S, et al. Extraction and purification of phycobiliproteins from algae and their applications[J]. Frontiers in Chemistry, 2022, 10: 1065355. doi: 10.3389/fchem.2022.1065355 [46] MANIRAFASHA E, NDIKUBWIMANA T, ZENG X, et al. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent[J]. Biochemical Engineering Journal, 2016, 109: 282-296. doi: 10.1016/j.bej.2016.01.025 [47] JOO J, YE Y, KIM D, et al. Magnetically recoverable hybrid TiO2 nanocrystal clusters with enhanced photocatalytic activity[J]. Materials Letters, 2013, 93: 141-144. doi: 10.1016/j.matlet.2012.10.067 [48] SALAWUDEEN A O, TAWABINI B S, AL-SHAIBANI A M, et al. Poly(2-hydroxyethyl methacrylate) grafted graphene oxide for cadmium removal from water with interaction mechanisms[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100288.