留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锚固的双向纤维布约束加固钢筋混凝土柱抗震性能

高鹏 袁大明 王田宇 王敬棠 陈涛

高鹏, 袁大明, 王田宇, 等. 锚固的双向纤维布约束加固钢筋混凝土柱抗震性能[J]. 复合材料学报, 2022, 39(11): 5525-5536. doi: 10.13801/j.cnki.fhclxb.20220803.004
引用本文: 高鹏, 袁大明, 王田宇, 等. 锚固的双向纤维布约束加固钢筋混凝土柱抗震性能[J]. 复合材料学报, 2022, 39(11): 5525-5536. doi: 10.13801/j.cnki.fhclxb.20220803.004
GAO Peng, YUAN Daming, WANG Tianyu, et al. Seismic behaviors of reinforced concrete column confined by bidirectional fiber reinforced polymer composite with anchor[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5525-5536. doi: 10.13801/j.cnki.fhclxb.20220803.004
Citation: GAO Peng, YUAN Daming, WANG Tianyu, et al. Seismic behaviors of reinforced concrete column confined by bidirectional fiber reinforced polymer composite with anchor[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5525-5536. doi: 10.13801/j.cnki.fhclxb.20220803.004

锚固的双向纤维布约束加固钢筋混凝土柱抗震性能

doi: 10.13801/j.cnki.fhclxb.20220803.004
基金项目: 国家自然科学基金(51208166);工程结构性能演化与控制教育部重点实验室开放基金(2018 KF-1)
详细信息
    通讯作者:

    高鹏,博士,副教授,硕士生导师,研究方向为纤维复合材料加固混凝土结构 E-mail: penggao@hfut.edu.cn

  • 中图分类号: TB332

Seismic behaviors of reinforced concrete column confined by bidirectional fiber reinforced polymer composite with anchor

  • 摘要: 双向纤维增强聚合物(Fiber reinforced polymer,FRP)复合材料布具有良好的两向正交抗拉性能,与传统单向布相比,使用其约束加固柱时能使构件获得抗剪、抗弯承载力和抗震延性的同时提高。开展了基于纤维锚钉锚固的双向布约束加固钢筋混凝土柱低周反复加载试验,参数包含布种类、层数和锚固方式,研究了加固柱的破坏模式、抗震性能和材料应变。 结果表明,柱在约束加固前后的破坏形态由剪切转变为弯曲破坏,构件延性大幅度提高;同层数的双向纤维布在环向应变值发挥少于单向布;使用锚钉可显著提升双向布纵向纤维应变,其应变值比未锚固前的提高了约1.5倍;并进一步提高约束柱抗弯承载力,较未加锚固前的约束柱承载力提高了2.9%~7.1%。成果可为双向纤维布在既有结构加固领域的应用提供指导。

     

  • 图  1  试验柱的尺寸、配筋、量测和加固方案

    FRP—Fiber reinforced polymer; Z or F—Strain gauge type on the longitudinal rebar or the FRP sheets, and the first number after the letter represents the plan position, while the second number represents the height position

    Figure  1.  Dimensions, reinforcement, measurement and strengthening schemes of experimental columns

    图  2  FRP锚钉的制备与安装

    Figure  2.  Preparation and installation of FRP anchor

    图  3  试验装置

    Figure  3.  Test setup

    图  4  加载制度

    Δ—Displacement loads; n—Number of cycles

    Figure  4.  Loading scheme

    图  5  双向BFRP布加固RC柱的极限破坏形态

    Figure  5.  Ultimate failure mode of RC columns strengthened with bidirectional BFRP sheets

    图  6  双向BFRP布加固RC柱典型混凝土破坏形态

    Figure  6.  Typical concrete failure modes of RC columns strengthened with bidirectional BFRP sheets

    图  7  纤维锚钉断裂破坏形态

    Figure  7.  Fracture failure mode of fiber anchors

    图  8  双向BFRP布加固RC柱的荷载-位移关系滞回曲线

    Figure  8.  Hysteretic curve of load-displacement relationship of RC columns strengthened with bidirectional BFRP sheets

    图  9  双向BFRP布加固RC柱的荷载-位移骨架曲线

    Figure  9.  Load-displacement skeleton curves of RC columns strengthened with bidirectional BFRP sheets

    图  10  U1和B1的位移-环向纤维应变曲线

    Figure  10.  Displacement and hoop fiber strain curves of U1 and B1 columns

    图  11  B1和B1 A的位移-纵向纤维应变曲线

    Figure  11.  Displacement and longitudinal fiber strain curves of B1 and B1 A columns

    图  12  B1和B1 A的位移-纵筋应变曲线

    Figure  12.  Displacement-longitudinal bar strain curve of B1 and B1 A columns

    表  1  玄武岩纤维增强复合材料(BFRP)布加固钢筋混凝土(RC)柱主要设计参数

    Table  1.   Main design parameters of reinforced concrete (RC) columns strengthened with basalt fiber reinforced polymer (BFRP)

    SpecimenBFRP typeBFRP layerNumber of anchor
    C00
    U1Unidirectional10
    B1Bidirectional10
    B2Bidirectional20
    B1 ABidirectional14
    B2 ABidirectional24
    Notes: C—Control column; U1—Strengthened with one layer unidirectional BFRP sheets; B1 and B2—Strengthened with one and two layers bidirectional BFRP sheets; B1 A and B2 A—Strengthened with bidirectional BFRP sheets and anchors.
    下载: 导出CSV

    表  2  混凝土材料力学性能

    Table  2.   Mechanical property of concrete

    Material Cube compressive
    strength/MPa
    Prismatic compressive
    strength/MPa
    Elastic modulus/MPa
    Concrete 32.8 21.9 3.18×104
    下载: 导出CSV

    表  3  钢材力学性能

    Table  3.   Mechanical properties of steel

    Material Yield strength/MPa Ultimate strength/MPa Elastic modulus/MPa
    Longitudinal rebar 472 608 2.18×105
    Stirrup 385 470 2.38×105
    下载: 导出CSV

    表  4  纤维布和浸渍胶材料力学性能

    Table  4.   Mechanical properties of FRP and resin

    MaterialCompressive strength/MPaYoung's module/GPaTensile strength/MPaElongation
    /%
    Thickness
    /mm
    Unidirectional FRP82.01230.02.00.37
    Bidirectional FRP82.01230.02.00.33
    Resin82.63.248.51.9
    下载: 导出CSV

    表  5  双向BFRP布加固RC柱抗震试验结果

    Table  5.   Seismic test results of RC columns strengthened with bidirectional BFRP sheets

    SpecimenΔy/mmΔc/mmΔu/mmPy/kNPc/kNμΔ/mmEsum/(kN·m)$ {\xi _{\text{e}}} $
    C11.022.527.587.4119.72.511.00.153
    U111.240.060.0108.9131.55.447.40.192
    B110.040.055.0104.1130.05.544.30.156
    B1 A12.040.052.5111.6133.84.439.20.155
    B214.090.0115.0115.5136.58.2141.50.173
    B2 A15.070.0130.0121.4146.28.7155.30.160
    Notes: Δy—Displacement of column top at yielding load; Δc—Displacement at ultimate load; Δu—Ultimate displacement when the load drops to 85% of the peak load; Py—Yielding lateral load; Pc—Ultimate lateral load; μΔ—Displacement ductility factor that is the ratio of Δu to Δy; Esum—Total accumulative dissipated energy at the ultimate state; ξe—Equivalent viscous damping ratio at the ultimate state.
    下载: 导出CSV

    表  6  BFRP布加固RC柱抗震承载力试验值与计算值对比

    Table  6.   Comparison of experimental and calculated seismic bearing capacity of RC columns strengthened with BFRP sheets

    Specimenεfe,x/10−6εfe,y/10−6εcc,u/10−6βjfcc/MPaFc/kNFe/kNFc/Fe
    U18250045316.5319.77114.13131.500.87
    B15250525036352.9119.85114.01130.000.88
    B1 A5250787536352.9119.85121.39133.800.91
    B25250525038835.8321.15114.57136.500.84
    B2 A5250787538835.8321.15129.12146.200.88
    Notes: εfe,x—Effective strain of circumferential fiber of FRP sheets; εfe,y—Effective strain of longitudinal fiber; εcc,u—Ultimate compressive strain of confined concrete; βj—Confinement stiffness parameter; fcc—Compressive strength of confined concrete; Fc—Calculated value of bearing capacity; Fe—Tested value of bearing capacity.
    下载: 导出CSV
  • [1] 冯鹏, 陆新征, 叶列平. 纤维增强复合材料建设工程应用技术[M]. 北京: 中国建筑工业出版社, 2011.

    FENG Peng, LU Xinzheng, YE Lieping. Application of fiber reinforced polymer in construction[M]. Beijing: China Architecture and Building Press, 2011(in Chinese).
    [2] LEE H K, CHEONG S H, HA S K, et al. Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets[J]. Composite Structures,2011,93(2):911-922. doi: 10.1016/j.compstruct.2010.07.002
    [3] ATTARI N, AMZIANE S, CHEMROUK M. Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets[J]. Construction and Building Materials,2012,37:746-757. doi: 10.1016/j.conbuildmat.2012.07.052
    [4] CAMPIONE G, MENDOLA L L, MONACO A, et al. Behavior in compression of concrete cylinders externally wrapped with basalt fibers[J]. Composites Part B: Engineering,2015,69:576-586. doi: 10.1016/j.compositesb.2014.10.008
    [5] 高鹏, 赵元鸿, 洪丽, 等. 圆角半径对碳纤维增强聚合物复合材料布约束型钢混凝土矩形短柱轴压性能的影响[J]. 复合材料学报, 2020, 37(4):775-785. doi: 10.13801/j.cnki.fhclxb.20190627.001

    GAO Peng, ZHAO Yuanhong, HONG Li, et al. Effect of corner radius on axial compressive performance of steel reinforced concrete rectangular short columns confined by CFRP[J]. Acta Materiae Compositae Sinica,2020,37(4):775-785(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190627.001
    [6] 王作虎, 杨菊, 崔宇强, 等. 碳纤维增强树脂复合材料加固钢筋混凝土柱抗震性能的尺寸效应试验[J]. 复合材料学报, 2020, 37(10):2645-2655. doi: 10.13801/j.cnki.fhclxb.20200212.001

    WANG Zuohu, YANG Ju, CUI Yuqiang, et al. Experiment on the size effect of seismic behavior for reinforced concrete columns strengthened by carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2020,37(10):2645-2655(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200212.001
    [7] American Concrete Institute. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2R-08[S]. Farmington Hills: American Concrete Institute, 2008.
    [8] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB/T 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB/T 50608-2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [9] GALAL K, ARAFA A, GHOBARAH A. Retrofit of RC square short columns[J]. Engineering Structures,2005,27(5):801-813. doi: 10.1016/j.engstruct.2005.01.003
    [10] ANDREW S. Strengthening reinforced concrete bridge T-beams with CFRP sheets plus bidirectional GFRP U-wraps[D]. Kansas: Kansas State University, 2019.
    [11] FLORES I, JF GÓMEZ, PV LLAURADÓ, et al. Evaluation through a finite element simulation of the performance of FRP anchors for externally bonded reinforcements[J]. Composite Structures,2021,267:113919.
    [12] FU B, TANG X T, LI L J, et al. Inclined FRP U-jackets for enhancing structural performance of FRP plated RC beams suffering from IC debonding[J]. Composite Structures,2018,200:36-46. doi: 10.1016/j.compstruct.2018.05.074
    [13] GALAL K, MOFIDI A. Shear strengthening of RC T-beams using mechanically anchored unbonded dry carbon fiber sheets[J]. Journal of Performance of Constructed Facilities,2010,24(1):31-39. doi: 10.1061/(ASCE)CF.1943-5509.0000067
    [14] HUGO C, MANUE A, CARLOS C, et al. Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces[J]. Materials and Structures,2015,48(9):2961-2981. doi: 10.1617/s11527-014-0370-z
    [15] BARBIERI G, BIOLZI L, BOCCIARELLI M, et al. Size and shape effect in the pull-out of FRP reinforcement from concrete[J]. Composite Structures,2016,143:395-417. doi: 10.1016/j.compstruct.2016.01.097
    [16] WU Z S, HONG Y, TOSHIHIRO A, et al. Peeling behavior and spalling resistance of bonded bidirectional fiber reinforced polymer sheets[J]. Journal of Composites for Construction, 2005, 9(3): 214-226.
    [17] KALFAT R, AL-MAHAIDI R. Improvement of FRP to concrete bond performance using bidirectional fiber patch anchors combined with FRP spike anchors[J]. Composite Structures,2016,155(11):89-98.
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081-2002[S]. Beijing: China Architecture and Building Press, 2003(in Chinese).
    [19] 中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Metallic materials—Tensile testing—Part 1: Method of test at room temperature: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [20] 中华人民共和国住房和城乡建设部. 混凝土结构后锚固技术规程: JGJ 145—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic China. Technical specification for post-installed fastenings in concrete structures: JGJ 145—2013[S]. Beijing: China Architecture and Building Press, 2013(in Chinese).
    [21] CASTILLO E, GRIFFITH M, INGHAM J. Straight FRP anchors exhibiting fiber rupture failure mode[J]. Composite Structures,2019,207(1):612-624.
    [22] KIM S, SMITH S. Pullout strength models for FRP anchors in uncracked concrete[J]. Journal of Composites for Construction,2010,14(4):406-414. doi: 10.1061/(ASCE)CC.1943-5614.0000097
    [23] CASTILLO E, KANITKAR R, SMITH S. Design approach for FRP spike anchors in FRP strengthened RC structures[J]. Journal of Composites for Construction,2019,214(2):23-33.
    [24] 黄镜渟, 周安, 詹炳根, 等. 玄武岩纤维布的力学性能和强度利用率研究[J]. 工业建筑, 2019, 49(3):1-5. doi: 10.13204/j.gyjz201903001

    HUANG Jingting, ZHOU An, ZHAN Binggen, et al. Research on mechanical properties and strength efficiency of basalt fiber fabric-reinforced epoxy composites[J]. Industrial Construction,2019,49(3):1-5(in Chinese). doi: 10.13204/j.gyjz201903001
    [25] VECCHIO C D, LUDOVICO M D, PROTA A, et al. Analytical model and design approach for FRP strengthening of non-conforming RC corner beam-column joints[J]. Engineering Structures,2015,87(15):8-20.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  259
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-07-11
  • 录用日期:  2022-07-16
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回