留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜胞壁Nomex蜂窝芯压剪复合力学响应

赵志勇 袁昊 刘闯 李玉军 孙立帅 王俊彪

赵志勇, 袁昊, 刘闯, 等. 倾斜胞壁Nomex蜂窝芯压剪复合力学响应[J]. 复合材料学报, 2023, 40(1): 521-529. doi: 10.13801/j.cnki.fhclxb.20220125.001
引用本文: 赵志勇, 袁昊, 刘闯, 等. 倾斜胞壁Nomex蜂窝芯压剪复合力学响应[J]. 复合材料学报, 2023, 40(1): 521-529. doi: 10.13801/j.cnki.fhclxb.20220125.001
ZHAO Zhiyong, YUAN Hao, LIU Chuang, et al. Mechanical response of inclined Nomex honeycombs under combined shear-compression loads[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 521-529. doi: 10.13801/j.cnki.fhclxb.20220125.001
Citation: ZHAO Zhiyong, YUAN Hao, LIU Chuang, et al. Mechanical response of inclined Nomex honeycombs under combined shear-compression loads[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 521-529. doi: 10.13801/j.cnki.fhclxb.20220125.001

倾斜胞壁Nomex蜂窝芯压剪复合力学响应

doi: 10.13801/j.cnki.fhclxb.20220125.001
基金项目: 国家自然科学基金(11902256);陕西省自然科学基金(2019JQ-479)
详细信息
    通讯作者:

    刘闯,博士,副教授,硕士生导师,研究方向为复合材料数字化制造 E-mail: Liuchuang@mail.nwpu.edu.cn

  • 中图分类号: TB332

Mechanical response of inclined Nomex honeycombs under combined shear-compression loads

Funds: National Natural Science Foundation of China (11902256); Natural Science Basic Research Program of Shaanxi (2019JQ-479)
  • 摘要: 成形具有一定曲率的夹层结构时,需要将蜂窝芯铣削成曲面形状,造成蜂窝胞壁呈一定倾角,进而降低蜂窝夹芯结构面外承载能力。为了定量化分析面外载荷作用下倾斜胞壁蜂窝芯的力学性能,建立了倾斜胞壁蜂窝芯面外压剪复合有限元模型,并通过设计专用Arcan夹具实现蜂窝芯的面外压剪复合加载,用于验证模型的有效性。对比仿真与实验结果,发现蜂窝芯压剪响应及胞壁变形模式吻合较好。利用验证的有限元模型对胞壁倾角范围为0°~40°的蜂窝芯在面外压剪复合载荷下的力学响应进行了研究,结果表明随着蜂窝胞壁倾角的增大,蜂窝芯面外承载能力逐渐降低;当胞壁倾斜角由0°增加到40°,初始应力峰值下降最大幅度为47.7%,平原阶段强度下降幅度为29%;进一步分析了倾斜胞壁蜂窝芯截面芯格尺寸与胞壁倾角的几何关系,将倾斜胞壁蜂窝芯等效为具有相同截面尺寸的垂直胞壁蜂窝芯,推导了倾斜胞壁蜂窝芯在面外压缩及剪切载荷作用下的坍塌强度,揭示了胞壁倾角对蜂窝芯坍塌强度影响机制。

     

  • 图  1  倾斜胞壁Nomex蜂窝芯几何构型示意图

    Figure  1.  Schematic representation of the inclined Nomex honeycomb

    L—Length of the honeycomb; W—Width of the honeycomb; H—Hight of the honeycomb; F—Out-of-plane load; FN—Normal load; FS—Shear load; ϕ—Loading angle; h—Vertical cell wall length; l—Inclined cell wall length; ω—Inclined angle

    图  2  蜂窝芯压剪复合试验装置

    Figure  2.  Test set-up of a honeycomb core under combined shear-compression loading

    CCD—Charge coupled device

    图  3  倾斜胞壁Nomex蜂窝芯压剪有限元模型及边界条件

    Figure  3.  Combined shear-compression finite element model and boundary condition of the inclined Nomex honeycomb

    图  4  胞壁倾角ω=0°蜂窝芯实验与数值模拟应力-位移曲线对比

    Figure  4.  Comparison of experimental and numerical stress-displacement curves for honeycomb with ω=0°

    图  5  胞壁倾角ω=0°蜂窝芯实验与数值模拟初始峰值应力σp 及平原阶段强度σr对比

    Figure  5.  Comparison of initial peak stress σp and plateau stage strength σr between experiment and numerical simulation for honeycomb with ω=0°

    图  6  胞壁倾角ω=0°蜂窝芯实验与数值模拟胞壁变形对比

    Figure  6.  Comparison of the deformation modes between the experiment and simulation for honeycomb with ω=0°

    图  7  蜂窝的变形模式示意图

    Figure  7.  Schematic of the deformation modes for honeycomb

    图  8  不同胞壁倾斜角蜂窝芯结构在加载角$\phi $=15°下的应力-位移曲线

    Figure  8.  Stress-displacement curves of inclined honeycomb at different inclined angle under the loading angle $\phi $=15°

    图  9  加载角度及蜂窝倾角对蜂窝芯初始峰值力及平原阶段强度影响

    Figure  9.  Effect of loading angle and inclined angle on the initial peak stress and plateau stage strength for honeycomb

    图  10  加载角度及蜂窝倾角对蜂窝芯变形的影响(蜂窝芯位移为0.2 mm)

    Figure  10.  Effect of loading angle and inclined angle on the deformation of honeycomb (Displacement of honeycomb is 0.2 mm)

    图  11  L方向剪切应力作用下蜂窝壁对应的剪切力流

    Figure  11.  Shear force flow in honeycomb cell when loaded in the L direction

    τ32—Shear stress; Qa—Vertical cell wall shear flow; Qb, Qc—Inclined cell wall shear flow

    图  12  不同胞壁倾斜蜂窝芯截面变化

    Figure  12.  Cross sections of inclined honeycomb at different inclined angles

    θ—Angle between inclined cell wall and horizontal

    图  13  蜂窝胞壁倾角ω对芯格斜边尺寸li及夹角θi影响

    Figure  13.  Effect of inclined angle ω on the cell wall length li and angle θi

    图  14  倾斜胞壁蜂窝芯等效处理

    Figure  14.  Equivalent of inclined cell wall honeycomb

    图  15  胞壁倾角对倾斜胞壁蜂窝芯坍塌应力与垂直胞壁蜂窝芯坍塌应力比值的影响

    Figure  15.  Effect of inclined angle on the ratio about the collapse stress of inclined cell wall honeycomb to the vertical cell wall honeycomb

    $ \sigma _3^{ * * } $, $ \tau _{32}^{ * * } $—Collapse compression stress and shear stress of inclined cell wall honeycomb; $ \sigma _3^ * $, $ \tau _{32}^ * $—Collapse compression stress and shear stress of the vertical cell wall honeycomb

    表  1  蜂窝胞壁的材料属性

    Table  1.   Material properties of the honeycomb cell wall

    Elastic propertyValueYield propertyValue
    EMD/MPa5000.0σMD/MPa115.0
    ECD/MPa3500.0σCD/MPa105.0
    G12/MPa520.0σ12/MPa72.0
    v0.2
    Notes: EMD and ECD—Young’s modulus in machine direction and cross machine direction; G12—Shear modulus; v—Poisson’s ratio; σMD and σCD—Tensile yield strength in machine direction and cross machine direction; σ12—Shear yield strength.
    下载: 导出CSV
  • [1] CASTANIE B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J]. Composites Part C: Open Access,2020,1:100004. doi: 10.1016/j.jcomc.2020.100004
    [2] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering,2020,181:107496. doi: 10.1016/j.compositesb.2019.107496
    [3] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对 CFRP 蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363.

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese).
    [4] SEEMANN R, KRAUSE D. Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level[J]. Composite Structures,2017,159:702-718. doi: 10.1016/j.compstruct.2016.09.071
    [5] JANG W Y, KYRIAKIDES S. On the buckling and crushing of expanded honeycomb[J]. International Journal of Mechanical Sciences,2015,91:81-90. doi: 10.1016/j.ijmecsci.2014.02.008
    [6] LI X, LU F, ZHANG Y, et al. Experimental study on out-of-plane mechanical and energy absorption properties of combined hexagonal aluminum honeycombs under dynamic impact[J]. Materials & Design,2020,194:108900. doi: 10.1016/j.matdes.2020.108900
    [7] LIU L, WANG H, GUAN Z. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading[J]. Composite Structures,2015,121:304-314. doi: 10.1016/j.compstruct.2014.11.034
    [8] 王宝芹, 王沫楠, 刘长喜. 基于多尺度方法的蜂窝夹层复合材料结构轴向压缩稳定性[J]. 复合材料学报, 2020, 37(3):601-608. doi: 10.13801/j.cnki.fhclxb.20190918.001

    WANG Baoqin, WANG Monan, LIU Changxi. Stability of honeycomb sandwich composite structure under axial compression based onmulti-scalemethod[J]. Acta Materiae Compositae Sinica,2020,37(3):601-608(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190918.001
    [9] LIU L, MENG P, WANG H, et al. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall[J]. Composites Part B: Engineering,2015,76:122-132. doi: 10.1016/j.compositesb.2015.02.017
    [10] RODRIGUEZ-RAMIREZ J D D, CASTANIE B, BOUVET C. Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core: Application to insert sizing[J]. Composite Structures,2018,193:121-139. doi: 10.1016/j.compstruct.2018.03.076
    [11] 冯威, 徐绯, 寇剑锋, 等. 考虑弹性支撑时蜂窝芯剪切屈曲强度的插值求解方法[J]. 复合材料学报, 2017, 34(6):1394-1399.

    FENG Wei, XU Fei, KOU Jianfeng, et al. Interpolation method for calculating the shear buckling strengths of honeycomb core considering elastic supports[J]. Acta Materiae Compositae Sinica,2017,34(6):1394-1399(in Chinese).
    [12] SHAFIQ M, AYYAGARI R S, EHAAB M, et al. Multiaxial yield surface of transversely isotropic foams: Part II—Experimental[J]. Journal of the Mechanics and Physics of Solids,2015,76:224-236. doi: 10.1016/j.jmps.2014.10.009
    [13] ZHANG D, FEI Q. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method[J]. Aerospace Science and Technology,2016,54:320-329. doi: 10.1016/j.ast.2016.05.003
    [14] MOHR D, DOYOYO M. Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading[J]. International Journal of Applied Mechanics,2004,71(3):375-385. doi: 10.1115/1.1683715
    [15] HONG S T, PAN J, TYAN T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J]. International Journal of Plasticity,2006,22(1):73-109. doi: 10.1016/j.ijplas.2005.02.002
    [16] ZHANG D, LU G, RUAN D, et al. Quasi-static combined compression-shear crushing of honeycombs: An experimental study[J]. Materials & Design,2019,167:107632. doi: 10.1016/j.matdes.2019.107632
    [17] HONG S T, PAN J, TYAN T, et al. Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads[J]. International Journal of Plasticity,2008,24(1):89-117. doi: 10.1016/j.ijplas.2007.02.003
    [18] HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression. Part I: Experiments[J]. International Journal of Solids and Structures,2011,48(5):687-697. doi: 10.1016/j.ijsolstr.2010.11.005
    [19] TOUNSI R, MARKIEWICZ E, HAUGOU G, et al. Dynamic behaviour of honeycombs under mixed shear-compression loading: Experiments and analysis of combined effects of loading angle and cells in-plane orientation[J]. International Journal of Solids and Structures,2016,80:501-511. doi: 10.1016/j.ijsolstr.2015.10.010
    [20] ASHAB A S M, RUAN D, LU G, et al. Quasi-static and dynamic experiments of aluminum honeycombs under combined compression-shear loading[J]. Materials & Design,2016,97:183-194. doi: 10.1016/j.matdes.2016.02.074
    [21] OLYMPIO K R, GANDHI F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures,2010,21(17):1719-1735. doi: 10.1177/1045389X09350331
    [22] ZHAO Z, LIU C, SUN L, et al. Experimental and numerical study on the constrained bending-induced collapse of hexagonal honeycomb[J]. Composite Structures,2021,277:114604. doi: 10.1016/j.compstruct.2021.114604
    [23] WANG Z, LIU J, HUI D. Mechanical behaviors of inclined cell honeycomb structure subjected to compression[J]. Composites Part B: Engineering,2017,110:307-314. doi: 10.1016/j.compositesb.2016.10.062
    [24] MACRO G, GILIOLI A, MANES A. Numerical investigation of a three point bending test on sandwich panels with aluminum skins and Nomex™ honeycomb core[J]. Computational Materials Science,2012,56:69-78. doi: 10.1016/j.commatsci.2012.01.007
    [25] ZHANG J, ASHBY M F. The out-of-plane properties of honeycombs[J]. International Journal of Mechanical Sciences,1992,34(6):475-489. doi: 10.1016/0020-7403(92)90013-7
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  887
  • HTML全文浏览量:  437
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-01-10
  • 录用日期:  2022-01-18
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回