留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物/金属复合材料界面性能的原子尺度表征

胡林慧 段明正 王帅 梁立红

胡林慧, 段明正, 王帅, 等. 聚合物/金属复合材料界面性能的原子尺度表征[J]. 复合材料学报, 2023, 40(7): 4234-4242
引用本文: 胡林慧, 段明正, 王帅, 等. 聚合物/金属复合材料界面性能的原子尺度表征[J]. 复合材料学报, 2023, 40(7): 4234-4242
HU Linhui, DUAN Mingzheng, WANG Shuai, LIANG Lihong. Atomic scale characterization of interfacial properties of polymer/metal composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4234-4242.
Citation: HU Linhui, DUAN Mingzheng, WANG Shuai, LIANG Lihong. Atomic scale characterization of interfacial properties of polymer/metal composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4234-4242.

聚合物/金属复合材料界面性能的原子尺度表征

基金项目: 国家自然科学基金 (12172035;92160203;12002034)
详细信息
    通讯作者:

    梁立红,博士,教授,研究方向为界面性能、断裂行为宏微观尺度研究 E-mail: lianglh@mail.buct.edu.cn

  • 中图分类号: TB331

Atomic scale characterization of interfacial properties of polymer/metal composites

Funds: National Natural Science Foundation of China(12172035; 92160203; 12002034)
  • 摘要: 聚合物/金属界面性能显著影响由金属和聚合物形成的复合材料的力学性能。结合热力学理论分析和分子动力学模拟,系统计算了几种典型聚合物(PS、PE、PP)和金属(Al、Ni、Cu、Fe)形成界面的断裂能及界面强度。聚合物/金属界面的界面应力随着界面位移的增加先增加,达到强度后进入界面损伤阶段,界面应力减小,直到界面完全断裂,应力降低为零。不同聚合物/金属界面的强度大小变化趋势与界面断裂能一致,界面断裂能模拟与理论计算结果基本一致。聚合物/金属界面断裂能与金属表面能强弱有关,由于金属的表面能随着Ni、Fe、Cu、Al的顺序逐渐减小,相应形成的聚合物/金属界面的断裂能也按照聚合物/Ni、聚合物/Fe、聚合物/Cu、聚合物/Al的顺序逐渐减小;同种金属情况下,PE/金属和PP/金属的界面强度相近,且均小于PS/金属的界面强度。进一步,界面的损伤通过聚合物的自由体积演化进行了表征。研究结果为聚合物/金属复合材料的选材、设计以及应用提供了依据。

     

  • 图  1  PE/Al界面模型示意图:(a)整体视图,(b)前视图和(c)单条PE链

    Figure  1.  Schematic illustration of PE/Al interface model: (a) front view, (b) overall view and (c) a single PE chain.

    图  2  界面应力-位移曲线:(a)PE/Al、PE/Cu、PE/Fe和PE/Ni;(b)PP/Al、PP/Cu、PP/Fe和PP/Ni;(c)PS/Al、PS/Cu、PS/Fe和PS/Ni;(d)聚合物/金属界面强度比较

    Figure  2.  Interfacial stress-interfacial displacement curves: (a) PE/Al, PE/Cu, PE/Fe and PE/Ni; (b) PP/Al, PP/Cu, PP/Fe and PP/Ni; (c) PS/Al, PS/Cu, PS/Fe and PS/Ni; (d) Interface strength of polymer/metal interface models

    图  3  聚合物/金属的界面断裂能

    Figure  3.  Interface fracture energy of polymer/metal interface models

    图  4  PE/Al界面模型的界面应力-加载位移曲线及界面分离结构

    Figure  4.  Interfacial stress-loading displacement curve of PE/Al interface model and interface structure evolution during tension fracture

    图  5  PE/Al界面模型的自由体积分数-加载位移曲线

    Figure  5.  Free volume fraction-loading displacement curve of PE/Al interface model

    表  1  聚合物和金属的热力学参数

    Table  1.   Thermodynamic parameters of polymers and metals

    Materialh/nmSV/(J·mol−1·K−1)H/(kJ·mol−1)V/(cm3·mol−1)γ/(J·m−2)
    Ni0.2710.1217.476.591.19
    Cu0.279.5813.007.100.76
    Fe0.288.2314.907.100.78
    Al0.2511.4310.6710.000.49
    PP1.1619.868.7021500.15
    PE0.8111.264.1194.700.06
    PS1.5319.4910.00594.000.08
    Notes:PP—Polypropylene; PE—Polyethylene; PS—Polystyrene; h is the equilibrium distance between atoms, Sv is the vibrational part of melting entropy, H is the melting enthalpy, V is the molar volume, and γ is the free energy of metal and polymer.
    下载: 导出CSV

    表  2  聚合物和金属间的界面自由能$ {\gamma _{P - M}} $

    Table  2.   Interface energy of polymer/metal$ {\gamma _{P - M}} $ J·m−2

    PPPEPS
    Ni0.6700.6270.636
    Cu0.4550.4120.421
    Fe0.4650.4220.431
    Al0.3200.2770.286
    下载: 导出CSV

    表  3  聚合物和金属的表面能

    Table  3.   Surface energy of polymers and metals

    Metalγm/(J·m−2)Polymerγp/(J·m−2)
    Ni2.426PP0.027
    Cu2.166PE0.030
    Fe2.222PS0.030
    Al1.347
    Notes:γp is the surface energy of polymer and γm is the surface energy of metal.
    下载: 导出CSV

    表  4  聚合物/金属的界面断裂能 $ \Gamma $

    Table  4.   Interface fracture energy of polymer/metal $ \Gamma $ J·m−2

    PPPEPS
    Ni1.7831.8301.820
    Cu1.7381.7851.775
    Fe1.7841.8311.821
    Al1.0541.1011.091
    下载: 导出CSV

    表  5  聚合物/金属界面模型的尺寸

    Table  5.   Size of polymer/metal interface models

    ModelPE/AlPE/NiPE/FePE/CuPP/AlPP/Ni
    Size/nm3.65×3.65×5.923.52×3.52×5.163.58×3.58×5.153.62×3.61×5.244.05×4.05×5.874.23×4.23×4.78
    ModelPP/FePP/CuPS/AlPS/NiPS/FePS/Cu
    Size/nm3.94×3.94×5.333.98×3.98×5.464.45×4.45×5.774.23×4.23×5.414.30×4.30×6.824.33×4.33×6.71
    下载: 导出CSV
  • [1] LANDGREBEAB D, KRAUSELB V, RAUTENSTRAUCHB A, et al. Energy-efficiency in a hybrid process of sheet metal forming and polymer injection moulding[J]. Procedia CIRP,2016,40:109-114. doi: 10.1016/j.procir.2016.01.068
    [2] 梅宝平, 钟轶峰, 黄子昂, 等. 金属芯压电纤维/聚合物复合材料压电-黏弹-塑性行为的细观力学模型[J]. 复合材料学报, 2018, 35(1):9. doi: 10.13801/j.cnki.fhclxb.20170412.007

    MEI Baoping, ZHONG Yifeng, HUANG Ziang, et al. Micromechanical model of Piezoelectric viscoelastic-plastic Behavior of Metal Core Piezoelectric fiber/Polymer Composites[J]. Chinese Journal of Composite Materials,2018,35(1):9(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170412.007
    [3] XIN Y M, ZHANG S L, LOU Y, et al. Determinative energy dissipation in liquid metal polymer composites for advanced electronic applications[J]. Advanced Materials Technologies,2020,5:1-8.
    [4] ZHOU Y C, WANG L, ZHANG H, et al. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers[J]. Applied Physics Letters,2012,101(1):1997.
    [5] 夏振庭, 钟轶峰, 黄子昂, 等. 含金属芯压电压磁纤维/聚合物基复合材料时变、非线性和多物理场响应的细观力学模型[J]. 复合材料学报, 2017, 34(12):9.

    XIA Zhenting, ZHONG Yifeng, HUANG Ziang, et al. Micromechanical Model of Time-varying, Nonlinear and Multi-physical Field Response of Magnetic fiber/Polymer Matrix Composites with Metal core Voltage[J]. Chinese Journal of Composite Materials,2017,34(12):9(in Chinese).
    [6] LIANG L H, LIU H Y, LONG H, et al. Size-dependent damage and fracture of two-layer systems[J]. Engineering Fracture Mechanics,2018,199:635-646. doi: 10.1016/j.engfracmech.2018.06.040
    [7] 杨诗润, 甘华华, 杨冰, 等. 聚合物复合材料界面技术的研究进展[J]. 现代塑料加工应用, 2015, 27:57-60. doi: 10.3969/j.issn.1004-3055.2015.06.016

    YANG Shirun, GAN Huahua, YANG Bing, et al. Research progress of interface technology of polymer composites[J]. Modern Plastics Processing and Application,2015,27:57-60(in Chinese). doi: 10.3969/j.issn.1004-3055.2015.06.016
    [8] 尚福林, 北村隆行. 界面裂纹萌生与扩展的分子动力学模拟[J]. 力学学报, 2007, 39(4):571-576. doi: 10.3321/j.issn:0459-1879.2007.04.021

    SHANG F L, KITAMURA T. Molecular dynamics simulation of interfacial crack initiation and propagation[J]. Chinese Journal od Theoretical and Applied Mechanics,2007,39(4):571-576(in Chinese). doi: 10.3321/j.issn:0459-1879.2007.04.021
    [9] MELTONYAN A V, POGHOSYAN A H, SARGSYAN S H, et al. The features of poly (vinylimidazole) adsorption on gold surface: a molecular dynamics study[J]. Colloid and Polymer Science,2019,297:1345-1352. doi: 10.1007/s00396-019-04554-x
    [10] ROUT A; PANDEY P; OLIVEIRA E F, et al. Atomically locked interfaces of metal (Aluminum) and polymer (Polypropylene) using mechanical friction[J]. Polymer,2019,169:148-153. doi: 10.1016/j.polymer.2019.02.049
    [11] LIU D L, ZHOU F, ZHOU H Z. The polymer-metal interactive behavior in polyphenylene sulfide/aluminium hetero interface in nano injection molding[J]. Composite Interfaces,2020,27:277-288. doi: 10.1080/09276440.2019.1626138
    [12] SHIMIZU K, MIYATA T, NAGAO T, et al. Visualization of the tensile fracture behaviors at adhesive interfaces between brass and sulfur-containing rubber studied by transmission electron microscopy[J]. Polymer,2019,181:121789. doi: 10.1016/j.polymer.2019.121789
    [13] LI X P, LIU F W, GONG N N, et al. Enhancing the joining strength of injection-molded polymer-metal hybrids by rapid heating and cooling[J]. Journal of Materials Processing Technology,2017,249:386-393. doi: 10.1016/j.jmatprotec.2017.06.034
    [14] SU C H, CHEN H L, JU S P, et al. The mechanical behaviors of polyethylene/silver nanoparticle composites: an insight from molecular dynamics study[J]. Scientific Reports,2020,10:7600. doi: 10.1038/s41598-020-64566-4
    [15] ZHOU M Y, XIONG X, DRUMMER D, et al. Interfacial interaction and joining property of direct injection-molded polymer-metal hybrid structures: a molecular dynamics simulation study[J]. Applied Surface Science,2019,478:680-689. doi: 10.1016/j.apsusc.2019.01.286
    [16] KISIN S, BOŽOVIĆ VUKIĆ J, VAN DER VARST P G T, et al. Estimating the polymer−metal work of adhesion from molecular dynamics simulations[J]. Chemistry of Materials,2007,19:903-907. doi: 10.1021/cm0621702
    [17] CHENG H C, HSU Y C, WU C H, et al. Molecular dynamics study of interfacial bonding strength of self-assembled monolayer-coated Au-Epoxy and Au–Au systems[J]. Applied Surface Science,2011,257:8665-8674. doi: 10.1016/j.apsusc.2011.05.045
    [18] HIRAHARA T, HIDAI H. Fiber implantation for interfacial joining of polymer to metal[J]. ACS Applied Polymer Materials,2020,2:3049-3053. doi: 10.1021/acsapm.0c00603
    [19] WANG H, TAO J, JIN K. The effect of mwcnts with different diameters on the interface properties of Ti/Cfrp fiber metal laminates[J]. Composite Structures,2021,266:113818. doi: 10.1016/j.compstruct.2021.113818
    [20] BANDARENKA H, BALUCANI M, CRESCENZI R, et al. Formation of composite nanostructures by corrosive deposition of copper into porous silicon[J]. Superlattices and Microstructures,2008,44:583-587. doi: 10.1016/j.spmi.2007.11.004
    [21] 王帅, 姚寅, 杨亚政, 等. 双层金属纳米板界面能密度的尺寸效应[J]. 力学学报, 2017, 49(5):978-984. doi: 10.6052/0459-1879-17-142

    WANG Shuai, YAO Yin, YANG Yazheng, et al. Size effect of the interface energy density in bi-nano-scaled -metallic plates[J]. Chinese Journal od Theoretical and Applied Mechanics,2017,49(5):978-984(in Chinese). doi: 10.6052/0459-1879-17-142
    [22] 李凯凯, 张建勋, 张威, 等. 冲击载荷下(纤维/聚合物)-金属层合板的大挠度动力响应[J]. 复合材料学报, 2020, 37(1):8.

    LI Kaikai, ZHANG Jianxun, ZHANG Wei, et al. Dynamic Response of Large Deflection of (fiber/polymer) -metal laminates under Impact Load[J]. Chinese Journal of Composite Materials,2020,37(1):8(in Chinese).
    [23] KU JH, JUNG IH, RHEE KY, et al. Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites[J]. Composites Part B:Engineering,2013,45:1282-1287. doi: 10.1016/j.compositesb.2012.06.016
    [24] LIANG LH, WEI H, LI XN, et al. Size-dependent interface adhesive energy and interface strength of nanostructured systems[J]. Surface & Coatings Technology,2013,236:525-530.
    [25] LIANG LH, YOU XM, MA HS. Interface energy and its influence on interface fracture between metal and ceramic thin films in nanoscale[J]. Journal of Applied Physics,2010,108(84317):1-5.
    [26] WUNDERLICH B. Thermal analysis [M]. New York: Academic Press, 1990.
    [27] VITOS L, RUBAN A, SKRIVER HL. The surface energy of metals[J]. Surface Science,1998,411:186-202. doi: 10.1016/S0039-6028(98)00363-X
    [28] 陈晓磊. 固体聚合物表面接触角的测量及表面能研究 [D]. 长沙: 中南大学, 2012.

    CHEN Xiaolei. Measurement of Surface Contact Angle and Surface Energy of Solid Polymers [D]. Changsha: Central South University, 2012(in Chinese).
    [29] CHANG Q, XIE J, MAO A, et al. Study on interface structure of Cu/Al clad plates by roll casting[J]. Metals,2018,8:770. doi: 10.3390/met8100770
    [30] ZHENG T, WANG S, ZHOU L, et al. The disentanglement and shear properties of amorphous polyethylene during friction: insights from molecular dynamics simulations[J]. Applied Surface Science,2022,580:152301. doi: 10.1016/j.apsusc.2021.152301
    [31] DAUBER-OSGUTHORPE P, ROBERTS VA, OSGUTHORPE DJ, et al. Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins,1988,4:31-47. doi: 10.1002/prot.340040106
    [32] RAMAKRISHNAN S K, MARTIN M, CLOITRE T, FIRLEJ L, GERGELY C. Design rules for metal binding biomolecules: understanding of amino acid adsorption on platinum crystallographic facets from density functional calculations[J]. Physical Chemistry Chemical Physics,2015,17:4193-4198. doi: 10.1039/C4CP05112B
    [33] KANHAIYA K, KIM S, IM W, HEINZ H. Accurate simulation of surfaces and interfaces of ten fcc metals and steel using lennard–jones potentials[J]. npj Computational Materials,2021,7:17. doi: 10.1038/s41524-020-00478-1
    [34] HEINZ H, VAIA R A, FARMER B L, NAIK R R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 lennard-jones potentials[J]. Journal of Physical Chemistry C,2008,112:17281-17290. doi: 10.1021/jp801931d
    [35] TAM L-H, LAU D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials[J]. RSC Advances,2014,4:33074-33081. doi: 10.1039/C4RA04298K
    [36] VARSHNEY V, PATNAIK S S, ROY A K, FARMER B L. Heat transport in epoxy networks: a molecular dynamics study[J]. Polymer,2009,50:3378-3385. doi: 10.1016/j.polymer.2009.05.027
    [37] AWASTHI A P, LAGOUDAS D C, HAMMERAND D C. Modeling of graphene-polymer interfacial mechanical behavior using molecular dynamics[J]. Modelling and Simulation in Materials Science and Engineering,2009,17:015002. doi: 10.1088/0965-0393/17/1/015002
    [38] ZABIHI Z, ARAGHI H, RODRIGUEZ P E D S, BOUJAKHROUT A, VILLALONGA R. Vapor sensing and interface properties of reduced graphene oxidepoly(methyl methacrylate) nanocomposite[J]. Journal of Materials Science:Materials in Electronics,2019,30:2908-2919. doi: 10.1007/s10854-018-00567-4
    [39] HANSON B, HOFMANN J, PASQUINELLI M A. Influence of copolyester composition on adhesion to soda-lime glass via molecular dynamics simulations[J]. ACS Applied Materials Interfaces,2016,8:13583-13589. doi: 10.1021/acsami.6b01851
    [40] ZHANG M, JIANG B, CHEN C, DRUMMER D, ZHAI Z. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: a molecular dynamics study[J]. Polymers,2019,11:1766. doi: 10.3390/polym11111766
    [41] JONES JE. On the determination of molecular fields. ii. from the equation of state of a gas[J]. Proceedings of the Royal Society of London. Series A,1924,106:463-477.
    [42] SU C H, CHEN H L, JU S P, et al. The mechanical behaviors of polyethylene/silver nanoparticle composites: an insight from molecular dynamics study[J]. Scientific Reports,2020,10:7600. doi: 10.1038/s41598-020-64566-4
    [43] THOMPSON A P, AKTULGA H M, BERGER R, et al. Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications,2022,271:108171. doi: 10.1016/j.cpc.2021.108171
    [44] STUKOWSKI A. Visualization and analysis of atomistic simulation data with ovito–the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering,2009,18:015012.
    [45] 张可, 姚重阳, 李栋宇, 等. 基于分子模拟的聚醚醚酮拉伸力学行为与改性[J]. 航空材料学报, 2022, 42(2):10. doi: 10.11868/j.issn.1005-5053.2021.000143

    ZHANG Ke, YAO chongyang, LI dongyu, et al. Tensile mechanical behavior and modification of polyether ether ketone based on molecular simulation[J]. Journal of Aeronautical Materials,2022,42(2):10(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000143
    [46] STUKOWSKI A. Computational analysis methods in atomistic modeling of crystals[J]. JOM,2014,66:399-407. doi: 10.1007/s11837-013-0827-5
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  173
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-09-10
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-09-30
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回