留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性

徐笑娟 罗进 陈兆权 冯德仁 裘进浩

徐笑娟, 罗进, 陈兆权, 等. 考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性[J]. 复合材料学报, 2022, 39(10): 5008-5019. doi: 10.13801/j.cnki.fhclxb.20211028.006
引用本文: 徐笑娟, 罗进, 陈兆权, 等. 考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性[J]. 复合材料学报, 2022, 39(10): 5008-5019. doi: 10.13801/j.cnki.fhclxb.20211028.006
XU Xiaojuan, LUO Jin, CHEN Zhaoquan, et al. Diffusion and attenuation of electromagnetic field in carbon fiber reinforced polymer structures considering interlaminar interface conductive behavior and resistive loss[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5008-5019. doi: 10.13801/j.cnki.fhclxb.20211028.006
Citation: XU Xiaojuan, LUO Jin, CHEN Zhaoquan, et al. Diffusion and attenuation of electromagnetic field in carbon fiber reinforced polymer structures considering interlaminar interface conductive behavior and resistive loss[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 5008-5019. doi: 10.13801/j.cnki.fhclxb.20211028.006

考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性

doi: 10.13801/j.cnki.fhclxb.20211028.006
基金项目: 安徽省自然科学基金(2108085QE231);安徽省教育厅科学研究项目(KJ2020A0232);电力电子与运动控制安徽普通高校重点实验室开放基金(PEMC2002);国家自然科学基金(52177126)
详细信息
    通讯作者:

    徐笑娟,博士,讲师,硕士生导师,研究方向为电磁无损检测技术 E-mail:xxj@ahut.edu.cn

  • 中图分类号: TB332

Diffusion and attenuation of electromagnetic field in carbon fiber reinforced polymer structures considering interlaminar interface conductive behavior and resistive loss

  • 摘要: 为满足碳纤维增强树脂基复合材料(CFRP)损伤涡流检测的应用需求,采用数值仿真和实验结合的方法对CFRP结构的电磁场扩散与衰减特性进行了研究。根据CFRP的结构特点,建立均质各向异性三维电磁场有限元模型,研究了层间界面的两种不同导电行为对CFRP板中涡流分布的影响,比较了界面不同导电行为下板中电磁场衰减特性及其与激励频率的关系。结果表明:界面电学行为对多向板涡流影响显著,不仅改变电流分布形式,还使电流强度降低,但单向板中涡流几乎不受界面导电行为的影响,其分布形式具有单一性;在界面不同导电行为下,单向板中电磁场衰减特性与频率无关,且电流衰减很快,多向板的电磁场衰减特性则与频率变化成正比,其电流衰减较为缓慢。通过电磁场能量守恒定律,分析了电阻损耗是影响单向板电流衰减的主导因素。最后,采用涡流检测实验半定量地验证了数值仿真结果和物理现象。

     

  • 图  1  碳纤维增强树脂(CFRP)基复合材料铺层示意图

    Figure  1.  Diagram of lay-up of carbon fiber reinforced polymer (CFRP) composites

    图  2  CFRP结构的微观形貌[21]

    Figure  2.  Microgram of CFRP structures[21]

    图  3  纤维方向与主轴和参考轴之间的关系

    Figure  3.  Relation between the principle axes, reference axes and fiber orientation

    图  4  CFRP结构涡流检测的数值仿真模型

    Figure  4.  Simulation model of eddy current testing for CFRP

    图  5  CFRP层间界面局部不导电示意图

    Figure  5.  Diagram of electric insulation in center part of CFRP interface

    图  6  层间界面局部不导电情况下CFRP板第四层间界面(0.5 mm)处的电流密度 |J| 分布

    Figure  6.  Distribution of current density |J| at the fourth interface of CFRP plates in the case of electric insulation

    图  7  层间界面局部不导电情况下CFRP板中的电流密度JxJy和磁场强度Hz与频率f之间的关系

    Figure  7.  Current density Jx, Jy and magnetic field Hz in CFRPs vs frequency f in the case of electric insulation

    图  8  层间界面局部不导电情况下CFRP板中总电流密度|J|与频率f之间的关系

    Figure  8.  Total current density |J| in CFRPs vs frequency f in the case of electric insulation

    图  9  考虑层间界面导电行为时CFRP板第四层间界面(0.5mm)处的电流密度|J|分布

    Figure  9.  Distribution of current density |J| at the fourth interface of CFRP plates considering interface conductive behavior

    图  10  CFRP板的等效电路模型

    Figure  10.  Model of equivalent circuits in CFRP plates

    Rc—Contact resistance; Rf—Fiber resistance; B—Electromagnetic wire

    图  11  考虑层间界面导电行为时CFRP板中的电流密度JxJy和磁场强度Hz与频率f之间的关系

    Figure  11.  Current density Jx, Jy and magnetic field Hz in CFRPs vs frequency f considering interface conductive behavior

    图  12  考虑层间界面导电行为时CFRP板中总电流密度|J|与频率f之间的关系

    Figure  12.  Total current density |J| in CFRPs vs frequency f considering interface conductive behavior

    图  13  200 kHz时CFRP板层间界面不同导电情况下的电流密度Jx在深度方向(z轴)的分布比较

    Figure  13.  Comparison of current density Jx (200 kHz) distributed in depth direction in different conductive behavior of CFRP interface

    图  14  各向同性CFRP板(σ=29940 S/m) 0.5 mm深处的电流密度|J|分布

    Figure  14.  Distribution of current density |J| in isotropic CFRP plate (σ=29940 S/m) at the 0.5 mm depth

    图  15  各向同性CFRP板(σ=29940 S/m)中的电流密度Jx和磁场强度Hz与频率f之间的关系

    Figure  15.  Current density Jx and magnetic field Hz in isotropic CFRP plate (σ=29940 S/m) vs frequency f

    图  16  涡流检测系统

    Figure  16.  Eddy current testing system

    PC—Personal computer; EC—Eddy current

    图  17  CFRP板背面裂纹涡流检测示意图

    Figure  17.  Schematic diagram of eddy current testing for the back cracks in CFRP plates

    t—Thickness

    图  18  不同频率f下CFRP单向板中的背面裂纹涡流检测结果

    Figure  18.  Measurement results of back crack in unidirectional CFRP using eddy current testing with different frequencies f

    图  19  不同频率f下CFRP多向板中的背面裂纹涡流检测结果

    Figure  19.  Measurement results of back crack in multidirectional CFRP using eddy current testing with different frequencies f

  • [1] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [EB/OL]. (2021-03-12)[2021-03-13]. http://www.gov.cn/xinwen/2021−03/13/content_5592681.htm

    Central People’s Government of the People’s Republic of China. The fourteenth five year plan for national economic and social development of the People’s Republic of China and the outline of long-term goals for 2035[EB/OL]. (2021-03-12)[2021-03-13]. http://www.gov.cn/xinwen/2021−03/13/content_5592681.htm(in Chinese).
    [2] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2070-2076. doi: 10.13801/j.cnki.fhclxb.20200824.005

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2070-2076(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200824.005
    [3] 杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究进展[J]. 复合材料学报, 2017, 34(1):1-11. doi: 10.13801/j.cnki.fhclxb.20160328.012

    YANG Zhiyong, ZHANG Boming, XIE Yongjie, et al. Research progress on fabrication technology of space mirror using carbon fiber composite[J]. Acta Materiae Compositae Sinica,2017,34(1):1-11(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160328.012
    [4] 杨小平, 黄智彬, 张志勇, 等. 实现节能减排的碳纤维复合材料应用进展[J]. 材料导报, 2010, 24(3):1-5, 10.

    YANG Xiaoping, HUANG Zhibin, ZHANG Zhiyong, et al. Application progress of carbon fiber reinforced polymers for energy saving and emission reduction[J]. Materials Reports,2010,24(3):1-5, 10(in Chinese).
    [5] MOOK G, LANGE R, KOESER O. Non-destructive characterisation of carbon-fiber-reinforced plastics by means of eddy-currents[J]. Composites Science and Technology,2001,61(6):865-873. doi: 10.1016/S0266-3538(00)00164-0
    [6] 任吉林, 林俊明. 电磁无损检测[M]. 北京: 科学出版社, 2008.

    REN Jilin, LIN Junming. Electromagnetic nondestructive testing[M]. Beijing: Science Press, 2008(in Chinese).
    [7] DU Y, LI X, XIE S, et al. Reconstruction of cracks in a carbon fiber-reinforced polymer laminate plate from signals of eddy current testing[J]. Journal of Composite Materials,2020,54(24):3527-3536. doi: 10.1177/0021998320916545
    [8] ZENG Z, TIAN Q, WANG H, et al. Testing of delamination in multidirectional carbon fiber reinforced polymer lami-nates using the vertical eddy current method[J]. Compo-site Structures,2019,208:314-321. doi: 10.1016/j.compstruct.2018.10.027
    [9] DU Y, XIE S, CHEN Z, et al. Detectability evaluation of eddy current testing probes for inspection of defects in carbon fiber reinforced polymer laminates[J]. International Journal of Applied Electromagnetics and Mechanics,2017,55:185-193. doi: 10.3233/JAE-170083
    [10] XU X, JI H, QIU J, et al. Detection of delamination in lami-nated CFRP composites using eddy current testing: Simulation and experimental study[J]. International Journal of Applied Electromagnetics and Mechanics,2018,57:177-192. doi: 10.3233/JAE-170136
    [11] MIZUKAMI K, MIZUTANI Y, TODOROKI A, et al. Detection of in-plane and out-of-plane fiber waviness in unidirectional carbon fiber reinforced composites using eddy current testing[J]. Composites Part B: Engineering,2016,86:84-94. doi: 10.1016/j.compositesb.2015.09.041
    [12] 程军, 杨继全, 裘进浩, 等. 基于涡流成像的碳纤维增强树脂基复合材料细观结构可视化[J]. 复合材料学报, 2018, 35(8):2074-2083. doi: 10.13801/j.cnki.fhclxb.20170927.001

    CHENG Jun, YANG Jiquan, QIU Jinhao, et al. Visualization of meso-structure of carbon fiber reinforced polymer based on eddy current imaging[J]. Acta Materiae Compositae Sinica,2018,35(8):2074-2083(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170927.001
    [13] MIZUKAMI K, MIZUTANI Y, KIMURA K, et al. Visualization and size estimation of fiber waviness in multidirectional CFRP laminates using eddy current imaging[J]. Composites Part A: Applied Science and Manufacturing,2016,90:261-270. doi: 10.1016/j.compositesa.2016.07.008
    [14] BARDL G, NOCKE A, HÜBNER M, et al. Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique[J]. Composites Part B: Engineering,2018,132:49-60. doi: 10.1016/j.compositesb.2017.08.007
    [15] XU X, JI H, QIU J, et al. Off-axis estimation of lay-up orientation in CFRP laminated composites using eddy current testing[J]. International Journal of Applied Electromagnetics and Mechanics,2019,59:1195-1202. doi: 10.3233/JAE-171060
    [16] TODOROKI A. Skin effect of alternating electric current on laminated CFRP[J]. Advanced Composite Materials,2012,21(5-6):477-489. doi: 10.1080/09243046.2012.743716
    [17] MIZUKAMI K, MIZUTANI Y, KIMURA K, et al. Detection of in-plane fiber waviness in cross-ply CFRP laminates using layer selectable eddy current method[J]. Composites Part A: Applied Science and Manufacturing,2016,82:108-118. doi: 10.1016/j.compositesa.2015.11.040
    [18] JIAO S, LI J, DU F, et al. Characteristics of eddy current distribution in carbon fiber reinforced polymer[J]. Journal of Sensors,2016,2016(7):4292134. doi: 10.1155/2016/4292134
    [19] XU X, JI H, QIU J, et al. Interlaminar contact resistivity and its influence on eddy currents in carbon fiber reinforced polymer laminates[J]. NDT and E International,2018,94:79-91. doi: 10.1016/j.ndteint.2017.12.003
    [20] CHENG J, WANG B, XU D, et al. Resistive loss consideration in the finite element analysis of eddy current attenuation in anisotropic conductive composites[J]. NDT and E International,2021,119:102403. doi: 10.1016/j.ndteint.2021.102403
    [21] ANGELIDIS N. Damage sensing in CFRP composites using electrical potential techniques[D]. UK: Cranfield University, 2004.
    [22] PRATAP S, WELDON W. Eddy currents in anisotropic composites applied to pulsed machinery[J]. IEEE Transactions on Magnetics,1996,32(2):437-444. doi: 10.1109/20.486530
    [23] WANG S, CHUNG D. Electrical behavior of carbon fiber polymer-matrix composites in the through-thickness direction[J]. Journal of Materials Science,2000,35:91-100. doi: 10.1023/A:1004744600284
    [24] CHENG J, JI H, QIU J, et al. Novel electromagnetic modeling approach of carbon fiber-reinforced polymer laminate for calculation of eddy currents and eddy current testing signals[J]. Journal of Composites Materials,2015,49(5):617-631. doi: 10.1177/0021998314521475
    [25] YI Q, TIAN G Y, MALEKMOHAMMADI H, et al. Inverse reconstruction of fibre orientation in multilayer CFRP using forward FEM and eddy current pulsed thermography[J]. NDT and E International,2021,122:102474. doi: 10.1016/j.ndteint.2021.102474
    [26] COMSOL Inc.. COMSOL multiphysics reference manual 5.3a [CP]. Stockholm: COMSOL Inc., 2017.
    [27] MOOK G, MICHEL F, SIMONIN J. Electromagnetic imaging using probe arrays[J]. Journal of Mechanical Engineering,2011,57(3):227-236. doi: 10.5545/sv-jme.2010.173
  • 加载中
图(19)
计量
  • 文章访问数:  894
  • HTML全文浏览量:  482
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-13
  • 录用日期:  2021-10-15
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回