留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含阻尼层夹芯复合材料充模工艺与仿真

孙士勇 张润东 王新玲 杨睿

孙士勇, 张润东, 王新玲, 等. 含阻尼层夹芯复合材料充模工艺与仿真[J]. 复合材料学报, 2023, 40(8): 4471-4480. doi: 10.13801/j.cnki.fhclxb.20221102.001
引用本文: 孙士勇, 张润东, 王新玲, 等. 含阻尼层夹芯复合材料充模工艺与仿真[J]. 复合材料学报, 2023, 40(8): 4471-4480. doi: 10.13801/j.cnki.fhclxb.20221102.001
SUN Shiyong, ZHANG Rundong, WANG Xinling, et al. Mold filling process and simulation of sandwich composites with damping layer[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4471-4480. doi: 10.13801/j.cnki.fhclxb.20221102.001
Citation: SUN Shiyong, ZHANG Rundong, WANG Xinling, et al. Mold filling process and simulation of sandwich composites with damping layer[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4471-4480. doi: 10.13801/j.cnki.fhclxb.20221102.001

含阻尼层夹芯复合材料充模工艺与仿真

doi: 10.13801/j.cnki.fhclxb.20221102.001
基金项目: 国家重点研发计划(2020YFB1506704-02);国家自然科学基金(51975085);中央高校基本科研业务费专项基金(DUT21GF405)
详细信息
    通讯作者:

    杨睿,博士,教授,博士生导师,研究方向为高性能复合材料结构设计与制造 E-mail: yangrui@dlut.edu.cn

  • 中图分类号: TB332

Mold filling process and simulation of sandwich composites with damping layer

Funds: National Key Technology R&D Program of China (2020 YFB1506704-02); National Natural Science Foundation of China (51975085); Fundamental Research Funds for the Central Universities (DUT21GF405)
  • 摘要: 在复合材料中引入黏弹性阻尼层是改善复合材料结构振动特性的有效方法。针对穿孔硅橡胶夹芯复合材料的真空辅助树脂传递工艺(VARTM)进行了实验与仿真分析。首先采用恒压注射条件分别测试了纤维增强材料及加入导流网后的等效渗透率。然后搭建了实验室VARTM观测平台进行了充模实验,同时基于RTM-Worx软件建立了树脂充模模型。通过对比实验与仿真的树脂流动状态图及不同时刻的填充面积,验证了仿真模型的有效性。最后,探究了阻尼层穿孔列间距、行距、直径及“边缘效应”等参数对树脂充模的时间及充模过程的影响。结果表明:仿真模型能够较好预测树脂流动情况,不合理的阻尼层参数会影响树脂的流动甚至导致缺陷的产生。

     

  • 图  1  含阻尼层预制体模型图

    Figure  1.  Model diagram of preform with damping layer

    图  2  真空辅助树脂传递工艺(VARTM)成型实验平台

    Figure  2.  Vacuum assisted resin transfer molding (VARTM) process experiment platform

    图  3  充模中边缘效应图

    Figure  3.  Edge effect diagram in mold filling

    图  4  含阻尼层夹芯复合材料的充模模型

    Figure  4.  Filling model of sandwich composites with damping layer

    图  5  含阻尼层夹芯复合材料上下面树脂流动图

    Figure  5.  Resin flow diagram of sandwich composites with damping layer at top and bottom surfaces

    图  6  含阻尼层夹芯复合材料树脂填充剖面示意图

    Figure  6.  Section diagram of sandwich composites with damping layer filled by resin

    图  7  含阻尼夹芯复合材料填充过程的实验与仿真对比

    Figure  7.  Experimental and simulation comparison of filling process of sandwich composites with damping layer

    图  8  含阻尼层夹芯复合材料实验和仿真树脂填充状态对比

    Figure  8.  Comparison of experimental and simulated resin filling state of sandwich composites with damping layer

    图  9  阻尼层穿孔间距对含阻尼层夹芯复合材料VARTM成型充模时间的影响

    Figure  9.  Effects of damping layer perforation spacing on filling time of VARTM sandwich composites with damping layer

    图  10  不同穿孔直径下的含阻尼层夹芯复合材料VARTM成型填充时间

    Figure  10.  VARTM filling time of sandwich composites with damping layer under different perforation diameters

    图  11  不同穿孔直径对含阻尼层夹芯复合材料VARTM成型树脂流动的影响

    Figure  11.  Effects of different perforating diameter on resin flow in VARTM sandwich composites with damping layer

    图  12  不同边缘效应的含阻尼层夹芯复合材料预成型体的填充时间

    Figure  12.  Filling time of preformed sandwich composites with different edge effects

    图  13  含阻尼层夹芯复合材料下层合板填充时间分布

    Figure  13.  Filling time distribution at bottom laminate of sandwich composites with damping layer

    表  1  材料参数测试结果

    Table  1.   Test results of material parameters

    Laminate
    type
    Equivalent
    porosity/%
    Average permeability/
    (10−11 m2)
    Length wise KxWidth wise Ky
    EW200 57.4 2.78 2.67
    EW200+ 60.0 115 83
    下载: 导出CSV

    表  2  阻尼层穿孔间距对含阻尼层夹芯复合材料VARTM成型树脂流动的影响

    Table  2.   Effects of damping layer perforation spacing on resin flow in VARTM sandwich composites with damping layer

    Process parameterResin flow diagram at 50% filling modulus of the preform
    D=2 mm, C=15 mm
    Change row space S
    D=2 mm, S=15 mm
    Change column space C
    下载: 导出CSV

    表  3  不同穿孔直径对应的含阻尼层夹芯复合材料VARTM成型孔洞渗透率

    Table  3.   Permeability of VARTM sandwich composites with damping layer in different perforation diameters

    Diameter/mmPorosity/mm2
    0.5 3.927×10−5
    1 0.0127
    2 0.161
    3 0.498
    4 1.031
    5 1.758
    6 2.682
    7 3.802
    8 5.118
    下载: 导出CSV
  • [1] SUN S, WANG X, LIANG J, et al. Analysis on fracture behaviour of stitched foam sandwich composites using interlaminar tension test[J]. Journal of Sandwich Structures & Materials,2022,24(3):1515-1534.
    [2] SERRANO-GONZÁLEZ J, LACAL-ARÁNTEGUI R. Technological evolution of onshore wind turbines-A market-based analysis[J]. Wind Energy,2016,19(12):2171-2187. doi: 10.1002/we.1974
    [3] ZHOU X Q, YU D Y, SHAO X Y, et al. Research and applications of viscoelastic vibration damping materials: A review[J]. Composite Structures,2016,136:460-480. doi: 10.1016/j.compstruct.2015.10.014
    [4] LAKES R S. High damping composite materials: Effect of structural hierarchy[J]. Journal of Composite Materials,2002,36(3):287-297. doi: 10.1177/0021998302036003538
    [5] 邓京兰, 王继辉, 连军. RTM充模过程(Ⅱ): 有限元分析[J]. 武汉理工大学学报, 2003, 25(8): 48-51.

    DENG Jinglan, WANG Jihui, LIAN Jun. Computer simulation of RTM mold filling processes(II): FEM analysis[J]. Journal of Wuhan University of Technology, 2003, 25(8): 48-51(in Chinese).
    [6] YOON M K, DOLAN D F. Homogenous modeling of VARTM processes with hybrid layered media[J]. Journal of Composite Materials,2008,42(8):805-824. doi: 10.1177/0021998307088567
    [7] YANG B, JIN T, BI F, et al. Modeling the resin flow and numerical simulation of the filling stage for vacuum-assisted resin infusion process[J]. Journal of Reinforced Plastics and Composites,2014,33(21):1976-1992. doi: 10.1177/0731684414551039
    [8] SHEVTSOVA S, ZHILYAEVB I, CHANG S H, et al. Two-stage numerical approach for reliable recognition of dry spots at the VAP infusion of large composite parts of complex shape[J]. Composites Structures,2021,259:113437. doi: 10.1016/j.compstruct.2020.113437
    [9] 赖家美, 王德盼, 陈显明, 等. VARTM工艺中高渗透导流介质对树脂充填行为的影响[J]. 高分子材料科学与工程, 2014, 30(7):120-125, 131. doi: 10.16865/j.cnki.1000-7555.2014.07.025

    LAI Jiamei, WANG Depan, CHEN Xianming, et al. Effects of high-permeability medium on resin filing behavior in vacuum assisted resin transfer molding process[J]. Polymeric Materials Science and Engineering,2014,30(7):120-125, 131(in Chinese). doi: 10.16865/j.cnki.1000-7555.2014.07.025
    [10] 李彩林, 高霞, 柳鑫, 等. VARI液体成型复合材料机盖的数值模拟及工艺验证[J]. 塑料工业, 2020, 48(2): 92-96, 174.

    LI Cailin, GAO Xia, LIU Xin, et al. Digital simulation and progress verification of composite cover plate by VARI technology[J]. Plastics Industry, 2020, 48(2) : 92-96, 174(in Chinese).
    [11] 叶乔丹, 吴晓青. 真空灌注成型工艺导流网和夹层结构沟槽设计的模拟研究[J]. 纤维复合材料, 2018, 35(1): 25-32.

    YE Qiaodan, WU Xiaoqing. Study of flow medium and groove design of sandwich structure VARTM process molding[J]. Fiber Composites, 2018, 35(1): 25-32(in Chinese).
    [12] GRAY W G, MILLER C T. Examination of darcy's law for flow in porous media with variable porosity[J]. Environmental Science & Technology,2004,38:5895-5901.
    [13] 詹东, 杨睿, 孙士勇. RTM成型工艺中纤维体积密度不均匀性对树脂流动的影响[J]. 玻璃钢/复合材料, 2017(10):62-67. doi: 10.3969/j.issn.1003-0999.2017.10.011

    ZHAN Dong, YANG Rui, SUN Shiyong. Effect of fiber volume density heterogeneity on resin flow in RTM molding process[J]. Fiber Reinforced Plastics/Composites,2017(10):62-67(in Chinese). doi: 10.3969/j.issn.1003-0999.2017.10.011
    [14] MAGAGNATO D, SEUFFERT J, BERNATH A, et al. Experimental and numerical study of the influence of integrated load transmission elements on filling behavior in resin transfer molding[J]. Composites Structures,2018,198:135-143.
    [15] LAWRENCE J M, FREY P, OBAID A A, et al. Simulation and validation of resin flow during manufacturing of compo-site panels containing embedded impermeable inserts with the VARTM process[J]. Polymer Composites,2007,28(4):442-450. doi: 10.1002/pc.20293
    [16] BERTLING D, KAPS R, MULUGET A. Analysis of dry-spot behavior in the pressure field of a liquid composite molding process[J]. Aeronautical Journal,2016,7:577-585. doi: 10.1007/s13272-016-0207-2
    [17] ARBTER R. Contribution to robust resin transfer molding[D]. Zurich Switzerland: Eidgenössische Technische Hochschule ETH Zürich, 2008.
    [18] 金世奇, 李文晓, 刘昊鑫. 缝合夹层结构复合材料树脂传递模塑成型工艺充模仿真[J]. 复合材料学报, 2018, 35(12): 3342-3349.

    JIN Shiqi, LI Wenxiao, LIU Haoxin. Filling simulation of stitched sandwich composite by resin transfer molding process[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3342-3349(in Chinese).
    [19] 王科, 赖家美, 鄢冬冬, 等. 缝合泡沫夹芯结构复合材料VARTM工艺树脂充填模拟及验证[J]. 高分子材料科学与工程, 2015, 31(11):124-129. doi: 10.16865/j.cnki.1000-7555.2015.11.025

    WANG Ke, LAI Jiamei, YAN Dongdong, et al. Process simulation and verification of stitched foam core sandwich structure by VARTM process[J]. Polymeric Materials Science and Engineering,2015,31(11):124-129(in Chinese). doi: 10.16865/j.cnki.1000-7555.2015.11.025
    [20] JISHI H Z, UMER R, CANTWELL W J. Skin-core debonding in resin-infused sandwich structures[J]. Polymer Composites,2016,37(10):2974-2981.
    [21] YAN C, WU H L, REN X M, et al. Experimental and numerical study on the permeation behavior of foam-core sandwich panels in LCM[J]. Fibers and Polymers,2021,22(9):2612-2625. doi: 10.1007/s12221-021-0310-9
    [22] JHAN Y T, LEE Y J, CHUNG C H. Resin flowing analysis in sandwich laminates under VARTM process[J]. Journal of Reinforced Plastics and Composites,2011,30(6):533-545. doi: 10.1177/0731684411399142
    [23] JHAN Y T, LEE Y J, CHUNG C H. Experimental and numerical investigation of the VARTM process with a sandwich structure[J]. Journal of Composite Materials,2012,46(12):1417-1430. doi: 10.1177/0021998311418703
    [24] 施赫荣, 王继辉, 倪爱清, 等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2023, 40(2):782-793. doi: 10.13801/j.cnki.fhclxb.20220323.001

    SHI Herong, WANG Jihui, NI Aiqing, et al. Simulation and optimization of infusion process for perforated foam sandwich composite[J]. Acta Materiae Compositae Sinica,2023,40(2):782-793(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220323.001
    [25] 雷波, 周持兴, 俞炜, 等. 泡沫夹芯结构板泡沫壁流道内的流动特性[J]. 化工学报, 2012, 63(3):775-780. doi: 10.3969/j.issn.0438-1157.2012.03.014

    LEI Bo, ZHOU Chixing, YU Wei, et al. Flow characteristics in foam wall channel of foam sandwich panel[J]. CIESC Journal,2012,63(3):775-780(in Chinese). doi: 10.3969/j.issn.0438-1157.2012.03.014
    [26] 中华人民共和国国家质量监督检验检疫总局. 中国国家标准化管理委员会. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration of the People's Republic of China. Fiber enhanced plastic density and relative density test methods: GB/T 1463—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [27] 穆文博, 严波. VARTM的边缘效应数值模拟研究[J]. 模具技术, 2022(2):1-7. doi: 10.3969/j.issn.1001-4934.2022.02.001

    MU Wenbo, YAN Bo. Numerical simulation study on the edge effect of VARTM[J]. Die and Mould Technology,2022(2):1-7(in Chinese). doi: 10.3969/j.issn.1001-4934.2022.02.001
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  255
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 修回日期:  2022-10-07
  • 录用日期:  2022-10-20
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回