留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含磷液氧相容环氧树脂的热降解行为

李娟子 严佳 陈铎 崔运广 高畅 黄昊 武湛君

李娟子, 严佳, 陈铎, 等. 含磷液氧相容环氧树脂的热降解行为[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 李娟子, 严佳, 陈铎, 等. 含磷液氧相容环氧树脂的热降解行为[J]. 复合材料学报, 2023, 41(0): 1-10
Juanzi LI, Jia YAN, Duo CHEN, Yunguang CUI, Chang GAO, Hao HUANG, Zhanjun WU. Thermal degradation behaviors of phosphorus-containing liquid oxygen-compatible epoxy resin[J]. Acta Materiae Compositae Sinica.
Citation: Juanzi LI, Jia YAN, Duo CHEN, Yunguang CUI, Chang GAO, Hao HUANG, Zhanjun WU. Thermal degradation behaviors of phosphorus-containing liquid oxygen-compatible epoxy resin[J]. Acta Materiae Compositae Sinica.

含磷液氧相容环氧树脂的热降解行为

基金项目: 国家重点研发项目(2018YFA0702800)
详细信息
    通讯作者:

    严佳,博士,副教授,研究方向为材料物理与化学 E-mail:jyan@dlut.edu.cn

  • 中图分类号: TQ322.41

Thermal degradation behaviors of phosphorus-containing liquid oxygen-compatible epoxy resin

Funds: National Key Research and Development Program of China (No.2018YFA0702800)
  • 摘要: 环氧树脂在液氧环境中受到机械冲击时,局部温度上升,导致树脂分解产生可燃物质,易引发环氧树脂与液氧之间发生不相容反应。因此,研究液氧相容树脂的热降解行为有助于理解其液氧相容机制。本文采用10-(2, 5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)化学改性双酚A环氧树脂,制备了ODOPB改性液氧相容环氧树脂(ODOPB-EP),通过对其热降解行为进行研究,为理解其液氧相容机制提供理论基础。ODOPB-EP的热降解活化能为154.96kJ/mol,降解机制为相边界反应。在热降解过程中,改性树脂先从C—N和C—O弱键处断裂,随温度升高树脂骨架逐渐断裂生成苯酚及其衍生物等芳香类物质,同时ODOPB会分解生成联苯等物质,过程中伴随着含磷自由基的释放,能淬灭高活性的·H和·OH自由基,从而阻断自由基与液氧的氧化反应,提高树脂的液氧相容性。ODOPB-EP树脂的降解路径

     

  • 图  1  ODOPB改性液氧相容环氧树脂(ODOPB-EP)的合成路线

    Figure  1.  Synthesis route of liquid oxygen compatible epoxy resin modified with ODOPB (ODOPB-EP)

    图  2  ODOPB-EP的红外光谱图

    Figure  2.  FTIR spectrum of ODOPB-EP

    图  3  不同升温速率下ODOPB-EP在氮气气氛下的热重曲线

    Figure  3.  TG and DTG curves of ODOPB-EP under N2 atmosphere at various heating rates

    图  4  不同升温速率下ODOPB-EP在空气气氛下的热重曲线

    Figure  4.  TG and DTG curves of ODOPB-EP under air atmosphere at various heating rates

    图  5  Kissinger法拟合的ln (β/T2max)~1/Tmax关系曲线

    Figure  5.  Plot of ln (β/T2max) versus 1/Tmax according to Kissinger method

    图  6  Coasts-Redfern方法拟合的ln[g(α)/T2]对1/T关系曲线

    Figure  6.  Plot of ln[g(α)/T2] versus 1/T according to Coasts-Redfern method

    图  7  ODOPB-EP在氮气气氛下的三维TG-FTIR图

    Figure  7.  Three-dimensional TG-FTIR spectra of ODOPB-EP under N2 atmosphere

    图  8  不同温度下ODOPB-EP热解气相产物的红外光谱图

    Figure  8.  FTIR spectra of pyrolytic volatiles for ODOPB-EP at various temperatures

    图  9  ODOPB-EP在氮气氛围不同温度下热解气相产物的气质总离子流谱图

    Figure  9.  GC/MS total ion chromatograms of the pyrolytic compounds from ODOPB-EP at different temperatures under N2 atmosphere

    图  10  ODOPB-EP的降解路径

    Figure  10.  Pyrolytic process of ODOPB-EP

    图  11  ODOPB在550℃的降解气相产物质谱图及降解路径

    Figure  11.  Mass chromatograms of the pyrolytic compounds from ODOPB and the pyrolytic process of ODOPB at 550℃

    图  12  ODOPB-EP的动态热机械性能分析(DMA)结果

    Figure  12.  The results of dynamic mechanical analysis (DMA) for ODOPB-EP

    表  1  ODOPB-EP在氮气和空气下的热重数据

    Table  1.   TG and DTG data of ODOPB-EP under N2 and air atmosphere

    AtmosphereHeating rate /(℃·min−1)T5%/℃Tmax/℃Residue at 800℃/%
    Tmax1Tmax2
    N2 5371.1389.418.7
    10376.1400.617.8
    15388.3405.816.8
    20397.6421.316.6
    Air 5319.4382.7581.70.70
    10335.6394.6599.70.72
    15353.3405.3618.20.88
    20358.1415.6627.31.52
    Note: T5%—Temperature corresponding to mass loss 5% of material; Tmax—Temperature corresponding to maximum thermal degradation rate.
    下载: 导出CSV

    表  2  Coasts-Redfern方法计算不同机制模型的活化能及相关系数[22, 23]

    Table  2.   Activation energy and correlation coefficient calculated by Coasts-Redfern method [22, 23]

    Kinetic mechanism modelsg(α)5℃/min10℃/min15℃/min20℃/min
    E/(kJ·mol−1)rE/(kJ·mol−1)rE/(kJ·mol−1)rE/(kJ·mol−1)r
    F1−ln(1−α)158.710.875157.110.915180.910.911186.190.906
    F21/(1-α)58.890.98656.940.97465.850.97868.020.980
    F31/(1−α)2129.070.988124.820.976144.330.980149.080.983
    A2[−ln(1−α)]1/273.720.85673.080.90084.130.89686.580.891
    A3[−ln(1−α)]1/345.390.83545.070.88251.880.87853.370.873
    A4[−ln(1−α)]1/431.220.80831.070.86035.750.85536.770.849
    R21−(1−α)1/2142.040.843140.970.889162.240.885166.930.879
    R31−(1−α)1/3147.400.854146.170.872168.250.894173.130.889
    D1α2265.410.822263.870.872303.570.867312.260.862
    D2(1−α)ln(1-α)+α284.330.842282.230.888324.800.884334.170.879
    D3[1−(1−α)1/3]2306.080.864303.280.906349.140.902359.310.897
    D4(1−2α/3)−(1−α)2/3291.550.849289.220.895332.880.890342.510.885
    Note: g(α)—Degradation mechanism function; E—Activation energy; r—Degree of fit.
    下载: 导出CSV

    表  3  不同温度下ODOPB-EP的热分解气相产物

    Table  3.   Pyrolytic compounds of ODOPB-EP under different temperatures

    PeakCompoundsm/zPeakCompoundsm/z
    1929121
    210610136
    39411160
    410812134
    510713158
    612114174
    712215154
    812216172
    下载: 导出CSV
  • [1] GUO F L, TAN D, WU T, et al. Experimental characterization and molecular dynamics simulation of thermal stability, mechanical properties and liquid oxygen compatibility of multiple epoxy systems for cryotank applications[J]. Extreme Mechanics Letters,2021,44:101227. doi: 10.1016/j.eml.2021.101227
    [2] LI S C, LI J Z, CUI Y. G, et al. Liquid oxygen compatibility of epoxy matrix and carbon fiber reinforced epoxy composite[J]. Composites Part A,2022,154:106771. doi: 10.1016/j.compositesa.2021.106771
    [3] 湛利华, 关成龙, 黄诚, 等. 航天低温复合材料贮箱国内外研究现状分析[J]. 航空制造技术, 2019, 62(16):79-87. doi: 10.16080/j.issn1671-833x.2019.16.079

    ZHAN Lihua, GUAN Chenglong, HUANG Cheng, et al. Analysis of research status of composite cryotank for space[J]. Aeronautical Manufacturing Technology,2019,62(16):79-87(in Chinese). doi: 10.16080/j.issn1671-833x.2019.16.079
    [4] VICKERS J. NASA Composite cryotank technology project game changing program [EB/OL]. [2015-12-1].https://ntrs.nasa.gov/citations/20160000466.
    [5] WANG H H, LI C, HOU Z, et al. A phosphorus-containing imidazole derivative towards the liquid oxygen compatibility and toughness of epoxy resin[J]. RSC Advances,2022,12(12):7046-7054. doi: 10.1039/D1RA09049F
    [6] American Society for Testing and Materials. ASTM G86-17 Standard test method for determining ignition sensitivity of materials to mechanical impact in ambient liquid oxygen and pressurized liquid and gaseous oxygen environments [S]. West Conshohocken, PA: American Society for Testing and Materials International, 2021.
    [7] ROBINSON M J, STOLTZFUS J M, OWENS T N, et al. Composite material compatibility with liquid oxygen [C]// 38 th AIAA Structures, Structural Dynamics, and Materials Conference, Seattle, 1997.
    [8] LIU N, MA B, LIU F, et al. Progress in research on composite cryogenic propellant tank for large aerospace vehicles[J]. Composites Part A,2021,143:106297. doi: 10.1016/j.compositesa.2021.106297
    [9] AMSTER A B, MILL T, CHAMBERLAIN D L, et al. Investigation of reactivity of launch vehicle materials with liquid oxygen [R]. Huntsville: National Aeronautics and Space Administration, 1967.
    [10] MILL T, CHANBERLAIN D L, STRINGHAM R S, et al. Investigation of reactivity of launch vehicle materials with liquid oxygen [R]. Alabama: National Aeronautics and Space Administration, 1969.
    [11] 李家亮. 环氧树脂液氧相容性和低温力学性能研究[D], 大连: 大连理工大学, 2017.

    LI Jialiang. Study on liquid oxygen compatibility and cryogenic mechanical properties of epoxy resins [D]. Dalian: Dalian University of Technology, 2017 (in Chinese).
    [12] LI J, LIU X, WU Z, et al. The effect of 10-(2, 5-dihydroxyphenyl)-9, 10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide on liquid oxygen compatibility and cryogenic mechanical properties of epoxy resins [J]. High Performance Polymers 28(7) 2016, 28 (7): 820-830.
    [13] CAO Y F, WANG Z R, WANG J L, et al. Chitosan-bridged synthesis of 2 D/2 D hierarchical nanostructure towards promoting the fire safety and mechanical property of epoxy resin[J]. Composites Part A,2022,158:106958. doi: 10.1016/j.compositesa.2022.106958
    [14] HUO S Q, YANG S, WANG J, et al. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances[J]. Journal of Hazardous Materials,2020,386:121984. doi: 10.1016/j.jhazmat.2019.121984
    [15] TENG N, DAI J Y, WANG S P, et al. Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature[J]. Chemical Engineering Journal,2022,428:131226. doi: 10.1016/j.cej.2021.131226
    [16] 史路飞. 抗氧剂对管材用TPEE热降解动力学研究[J], 聚酯工业 35(4) (2022) 32-35.

    SHI Lufei. Kinetics of thermal degradation for effect of antioxidant on TPEE for pipes [J]. Polyester Industry, 2022, 35 (4): 32-35 (in Chinese).
    [17] LI H, WANG N, HAN X F, et al. Mechanism identification and kinetics analysis of thermal degradation for carbon fiber/epoxy resin[J]. Polymers,2021,13(4):569. doi: 10.3390/polym13040569
    [18] MA C, SANCHEZ-RODRIGUEZ D, KAMO T. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics[J]. Journal of Hazardous Materials,2021,412:125329. doi: 10.1016/j.jhazmat.2021.125329
    [19] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29:1702-1706. doi: 10.1021/ac60131a045
    [20] COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature,1964,201(4914):68-69. doi: 10.1038/201068a0
    [21] COATS A W, REDFERN J P. Kinetic parameters from thermogravimetric data. II[J]. Journal of Polymer Science Part B:Polymer Letters,1965,3(11):917-920. doi: 10.1002/pol.1965.110031106
    [22] QIAO Y H, DAS O, ZHAO S N, et al. Pyrolysis kinetic study and reaction mechanism of epoxy glass fiber reinforced plastic by thermogravimetric analyzer (TG) and TG-FTIR (Fourier-Transform Infrared) techniques[J]. Polymers,2020,12(11):739.
    [23] 杨婷婷, 高远博, 郑毅, 等. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(4):1-7. doi: 10.13475/j.fzxb.20200908307

    YANG Tingting, Gao Yuanbo, Zheng Yi, et al. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber[J]. Jouranl of Textile Research,2021,42(4):1-7(in Chinese). doi: 10.13475/j.fzxb.20200908307
    [24] MU X W, ZHAN J, MA C, et al. Integrated effect of flame retardant wrapped macromolecular covalent organic nanosheet on reduction of fire hazards of epoxy resin[J]. Composites Part A,2019,117:23-33. doi: 10.1016/j.compositesa.2018.11.005
    [25] PENG W, NIE S B, Xu Y X, et al. A tetra-DOPO derivative as highly efficient flame retardant for epoxy resins[J]. Polymer Degradation and Stability,2021,193:109715. doi: 10.1016/j.polymdegradstab.2021.109715
    [26] LIU X F, XIAO Y F, LUO X, et al. Flame-retardant multifunctional epoxy resin with high performances[J]. Chemical Engineering Journal,2022,427:132031. doi: 10.1016/j.cej.2021.132031
    [27] 许松江, 许志彦, 侯泽明, 等. 环氧树脂/DOPS衍生物复合材料的阻燃性能及热降解行为[J]. 材料导报, 2023, 37(22):1-15.

    XU Songjiang, XU Zhiyan, HOU Zheming, et al. Flame retardant and thermal degradation behaviors of epoxy resin/DOPS derivative composites[J]. Materials Reports,2023,37(22):1-15(in Chinese).
    [28] LEVCHIK S V, WEIL E D. Thermal decomposition, combustion and flame-retardancy of epoxy resins?a review of the recent literature[J]. Polymer International,2004,53(12):1901-1929. doi: 10.1002/pi.1473
    [29] GRASSIE N, GUY M I. Degradation of epoxy polymers: Part 4 thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine[J]. Polymer Degradation and Stability,1986,14:125-137. doi: 10.1016/0141-3910(86)90011-X
    [30] GUO Y, RONG H, CHEN Z W, et al. A novel DOPO derivative containing multifunctional groups aiming to improve fire safety, thermal stability and curing state towards epoxy resin[J]. Polymer Degradation and Stability,2022,205:110142. doi: 10.1016/j.polymdegradstab.2022.110142
    [31] DUAN H J, CHEN Y S, JI S, et al. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties[J]. Chemical Engineering Journal,2019,375:121916. doi: 10.1016/j.cej.2019.121916
    [32] MA X, GUO W Q, Xu Z J, et al. Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance[J]. Composites Part B,2020,192:108005. doi: 10.1016/j.compositesb.2020.108005
    [33] 吕明哲, 李普旺, 黄茂芳, 等. 用动态热机械分析仪研究橡胶的低温动态力学性能[J]. 中国测试技术, 2007, 33(3):27-29.

    LV Mingzhe, LI Puwang, HUANG Maofang, et al. Studies on dynamic mechanical property of natural rubber at low temperature by using dunamical mechanical analyzer[J]. China Mesurement Technology,2007,33(3):27-29(in Chinese).
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-05-08
  • 录用日期:  2023-05-10
  • 网络出版日期:  2023-05-24

目录

    /

    返回文章
    返回