留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强树脂复合材料布约束不同强度混凝土配筋柱抗震性能

黄镜渟 高鹏 周安 马翠玲 姚军

黄镜渟, 高鹏, 周安, 等. 纤维增强树脂复合材料布约束不同强度混凝土配筋柱抗震性能[J]. 复合材料学报, 2022, 39(11): 5625-5636. doi: 10.13801/j.cnki.fhclxb.20220811.002
引用本文: 黄镜渟, 高鹏, 周安, 等. 纤维增强树脂复合材料布约束不同强度混凝土配筋柱抗震性能[J]. 复合材料学报, 2022, 39(11): 5625-5636. doi: 10.13801/j.cnki.fhclxb.20220811.002
HUANG Jingting, GAO Peng, ZHOU An, et al. Seismic performance of FRP-confined reinforced concrete columns with different concrete strength[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5625-5636. doi: 10.13801/j.cnki.fhclxb.20220811.002
Citation: HUANG Jingting, GAO Peng, ZHOU An, et al. Seismic performance of FRP-confined reinforced concrete columns with different concrete strength[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5625-5636. doi: 10.13801/j.cnki.fhclxb.20220811.002

纤维增强树脂复合材料布约束不同强度混凝土配筋柱抗震性能

doi: 10.13801/j.cnki.fhclxb.20220811.002
基金项目: 国家自然科学基金(51208166);中国地震局地震工程与工程振动重点实验室重点专项(2020 EEEVL0417);合肥学院人才科研基金(21-22 RC38);安徽省高校优秀青年人才基金项目(GXYQ2020068)
详细信息
    通讯作者:

    高鹏,博士,副教授,硕士生导师,研究方向为纤维复合材料加固混凝土结构 E-mail: penggao@hfut.edu.cn

  • 中图分类号: TU375

Seismic performance of FRP-confined reinforced concrete columns with different concrete strength

  • 摘要: 为了研究纤维增强树脂复合材料(FRP)布约束不同强度混凝土配筋柱的抗震性能,对4根约束柱及2根对比柱进行了低周反复荷载作用下的拟静力试验研究,探讨了混凝土强度和FRP种类等参数对加固柱抗震性能的影响。试验结果表明,加固构件均发生弯曲破坏,其承载、延性和耗能能力均有提高。且当柱混凝土强度大幅提高时,其延性和耗能指标较未加固前的提高率上升明显。在等围压条件下,玄武岩纤维布(BFRP)和碳纤维布(CFRP)约束柱的承载力相近,对于加固普通强度混凝土柱,使用BFRP较CFRP会得到更高的延性和耗能能力提升,但对于混凝土强度等级高至C50的柱,CFRP约束后柱的抗震性能略好。最后分别提出了针对不同FRP加固钢筋混凝土柱的骨架曲线模型,且基于更广泛混凝土强度、纵筋配筋率和轴压比范围下的数值计算结果也验证了试验结论。

     

  • 图  1  玄武岩纤维布(BFRP)和碳纤维布(CFRP)约束钢筋混凝土(RC)柱尺寸、配筋和加固方案图

    Figure  1.  Dimensions, reinforcements and strengthening scheme of basalt fiber reinforced polymer (BFRP) and carbon fiber reinforced polymer (CFRP)-confined reinforced concrete (RC) columns

    Φ—Diameter; FRP—Fiber reinforced polymer

    图  2  试验柱抗震试验加载装置

    B3S50A3—Label of specimen; 0.25Δ—Label of displacememnt loading cycle

    Figure  2.  Seismic test setup of tested columns

    图  3  试验柱测点布置

    Figure  3.  Arrangement of measuring points for tested columns

    F1, F2, F3, F4, F7, S1, S2, S3—Strain gauges of FRP and stirrups

    图  4  BFRP和CFRP约束不同强度混凝土配筋柱破坏形态

    Figure  4.  Failure modes of BFRP and CFRP-confined RC columns with different concrete strength

    图  5  BFRP和CFRP约束不同强度混凝土配筋柱滞回曲线

    Figure  5.  Hysteretic curves of BFRP and CFRP-confined RC columns with different concrete strength

    图  6  BFRP和CFRP约束不同强度混凝土配筋柱骨架曲线

    Figure  6.  Skeleton curves of BFRP and CFRP-confined RC columns with different concrete strength

    图  7  BFRP和CFRP约束不同强度混凝土配筋柱强度退化曲线

    Figure  7.  Strength degration curves of BFRP and CFRP-confined RC columns with different concrete strength

    图  8  BFRP和CFRP约束不同强度RC柱刚度退化曲线

    Figure  8.  Stiffness degration curves of BFRP and CFRP-confined RC columns with different concrete strength

    图  9  BFRP和CFRP约束RC柱截面应力-应变分布

    Figure  9.  Sectional stress and strain distribution of BFRP and CFRP-confined RC columns

    D—Diameter of section; dx—Width of concrete strip; h—Height of concrete compression zone; x—Distance from concrete strip to the top of section; $ \varepsilon _{{\text{cc}}}^{{'}} $—Maximum strain of concrete edge in compression zone; $ \varepsilon _{\text{c}}' $—Strain of concrete strip; $ {\varepsilon _{{\text{s}}i}} $—Strain of the ith row of reinforcements; M—Bending moment of section; N—Axial load of section; $ \sigma _{\text{c}}^{{'}} $—Stress of concrete strip; $ {\sigma _{{\text{s}}i}} $—Stress of the ith row of reinforcements; Asi—Area of the ith row of reinforcements

    图  10  BFRP和CFRP约束不同强度混凝土配筋柱试验与计算骨架曲线的对比

    Figure  10.  Comparison of skeleton curves between test and calculation of BFRP and CFRP-confined RC columns with different concrete strength

    图  11  混凝土强度组BFRP和CFRP约束RC柱骨架曲线计算结果

    Figure  11.  Calculated results of skeleton curves of BFRP and CFRP-confined RC columns with different concrete strength

    图  12  纵筋配筋率组BFRP和CFRP约束RC柱骨架曲线计算结果

    Figure  12.  Calculated results of skeleton curves of BFRP and CFRP-confined RC columns with different longitudinal reinforcement ratio

    图  13  轴压比组BFRP和CFRP约束RC柱骨架曲线计算结果

    Figure  13.  Calculated results of skeleton curves of BFRP and CFRP-confined RC columns with different axial compression ratio

    表  1  BFRP和CFRP约束RC柱主要设计参数

    Table  1.   Main design parameter of BFRP and CFRP-confined RC columns

    SpecimenAxial load N/kNFRP layerfcu/MPa
    U-S25252.331.4
    U-S50489.957.8
    B3-S25252.33-layer BFRP31.4
    B3-S50489.93-layer BFRP57.8
    C1-S25252.31-layer CFRP31.4
    C1-S50489.91-layer CFRP57.8
    Notes: fcu—Concrete compressive strength; U—Unconfined; B or C—BFRP or CFRP; S—Concrete strength. The numeral after B or C represents the number of FRP layers. The numeral after S denotes grade of concrete strength.
    下载: 导出CSV

    表  2  钢筋的力学性能指标

    Table  2.   Mechanical properties of reinforcements

    Diameter
    /mm
    Strength gradeYield strength
    fy/MPa
    Ultimate strength
    fu/MPa
    Elastic modulus
    Es/GPa
    Ductility
    εu/%
    18HRB400477.3626.5208.230.0
    6HPB300393.3519.6215.025.5
    下载: 导出CSV

    表  3  FRP布的力学性能指标

    Table  3.   Mechanical properties of FRP sheets

    TypeThickness
    t/mm
    Tensile strength
    ffrp/MPa
    Elastic modulus
    Efrp/GPa
    Rupture strain
    εfrp/%
    BFRP0.1071857.379.42.4
    CFRP0.1673629.9245.51.5
    下载: 导出CSV

    表  4  BFRP和CFRP约束不同强度混凝土配筋柱的抗震试验结果

    Table  4.   Seismic test results of BFRP and CFRP-confined RC columns with different concrete strength

    SpecimenYield pointPeak pointUltimate pointμΔEsum
    /
    (kN·mm)
    ξe
    Δy/mmPy/kNΔc/mmPc/kNΔu/mmPu/kN
    U-S25 14.65 64.33 29.94 78.67 46.34 66.87 3.17 37465 0.322
    U-S50 11.94 79.42 19.96 101.12 30.71 85.95 2.57 36684 0.336
    B3-S25 18.15 73.68 89.92 97.71 123.92 83.06 6.91 278986 0.348
    B3-S50 15.02 101.51 34.96 122.56 91.40 104.18 6.13 210566 0.377
    C1-S25 17.40 71.38 89.90 98.40 112.46 83.64 6.64 236945 0.344
    C1-S50 15.49 99.87 49.96 124.40 93.66 105.74 6.14 240994 0.380
    Notes: Δy—Yield placement; Py—Yield load; Pc—Peak load; Δc—Peak placement; Pu—Ultimate load; Δu—Ultimate displacement; μΔ—Displacement ductility factor; Esum—Total accumulative dissipated energy at the ultimate state; ξe—Equivalent viscous damping ratio at the ultimate state.
    下载: 导出CSV

    表  5  BFRP和CFRP约束RC柱计算与试验结果比较

    Table  5.   Comparison between calculated and test results of BFRP and CFRP-confined RC columns

    SpecimenPc, cal
    /kN
    Pc, exp/kN Pc, exp/Pc, calΔu, cal
    /mm
    Δu, exp
    /mm
    Δu, exp/Δu, cal
    U-S2572.6678.671.0848.2046.340.96
    U-S5093.98101.121.0833.9730.710.90
    B3-S2586.0797.711.14121.64123.921.02
    B3-S50111.64122.561.10103.5591.400.88
    C1-S2585.0298.401.16115.23112.460.98
    C1-S50110.67124.401.12102.1793.660.92
    Notes: Pc, cal—Calculated peak load; Pc, exp—Experimental peak load; Δu, cal—Calculated ultimate displacement; Δu, exp—Experimental ultimate displacement.
    下载: 导出CSV

    表  6  BFRP和CFRP约束RC柱计算参数及结果

    Table  6.   Calculated parameters and results of BFRP and CFRP-confined RC columns

    GroupSpecimenFRP layerfcu/
    MPa
    D/
    mm
    ρs/
    %
    nPy,cal/
    kN
    Δy,cal/
    mm
    Pc,cal/
    kN
    Incr. of Pc,cal/%Δu,cal/
    mm
    Incr. of
    Δu,cal/%
    Concrete strengthNU-S15 D18 A322.4182.160.349.9410.1564.5654.77
    NU-S25 D18 A331.3182.160.355.639.9672.6648.20
    NU-S50 D18 A357.8182.160.375.378.7493.9833.97
    NU-S60 D18 A369.7182.160.376.867.88102.3728.37
    NB3-S15 D18 A33-layer BFRP22.4182.160.362.5511.3375.0016.2137.94151.9
    NB3-S25 D18 A33-layer BFRP31.3182.160.373.0411.1686.1718.6122.18153.5
    NB3-S50 D18 A33-layer BFRP57.8182.160.395.5410.48112.1419.3103.93205.9
    NB3-S60 D18 A33-layer BFRP69.7182.160.3101.4610.19122.1719.384.50197.8
    NC1-S15 D18 A31-layer CFRP22.4182.160.363.7211.1174.0414.7129.78137.0
    NC1-S25 D18 A31-layer CFRP31.3182.160.375.2111.0485.0217.0115.23139.1
    NC1-S50 D18 A31-layer CFRP57.8182.160.388.9910.32110.6717.8102.17200.8
    NC1-S60 D18 A31-layer CFRP69.7182.160.3104.5310.01120.4117.682.35190.3
    Longitudinal reinforcement
    ratio
    NU-S25 D22 A331.3223.230.375.3810.3587.9652.48
    NU-S50 D22 A357.8223.230.387.818.40107.9436.78
    NB3-S25 D22 A33-layer BFRP31.3223.230.390.8211.61105.8220.3128.96145.7
    NB3-S50 D22 A33-layer BFRP57.8223.230.3113.6310.75137.8327.2108.20194.2
    NC1-S25 D22 A31-layer CFRP31.3223.230.391.0511.35106.1120.6123.56135.4
    NC1-S50 D22 A31-layer CFRP57.8223.230.3113.4310.65135.7425.8107.48192.2
    Axial compression
    ratio
    NU-S25 D18 A931.3182.160.971.039.7084.4231.42
    NU-S50 D18 A957.8182.160.997.869.09108.0123.53
    NB3-S25 D18 A93-layer BFRP31.3182.160.9102.4310.39113.1834.1108.04243.9
    NB3-S50 D18 A93-layer BFRP57.8182.160.9123.2810.17145.0834.383.15253.4
    NC1-S25 D18 A91-layer CFRP31.3182.160.998.8610.48113.6234.6105.40235.5
    NC1-S50 D18 A91-layer CFRP57.8182.160.9127.2810.14145.6534.883.91256.6
    Notes: N—Numerical calculated column; fcu—Concrete compressive strength; DDiameter of longitudinal reinforcement; ρs—Longitudinal reinforcement ratio; n—Axial compression ratio; Py,cal—Calculated yield load; Δy,cal—Calculated yield displacement; Pc,cal—Calculated peak load; Δu,cal—Calculated ultimate displacement; Incr.—Increment in performance index after FRP confinement.
    下载: 导出CSV
  • [1] 佟旋, 胡利, 张兴富. 城市更新中结构改造与加固技术及应用[J]. 工程抗震与加固改造, 2021, 43(2):125-129.

    TONG Xuan, HU Li, ZHANG Xingfu. Structural alteration and reinforcement technology in urban renewal and its application[J]. Earthquake Resistant Engineering and Retrofitting,2021,43(2):125-129(in Chinese).
    [2] 祖坤, 熊二刚, 宋良英, 等. 高强混凝土构件力学性能研究综述[J]. 硅酸盐通报, 2019, 38(10):3178-3192. doi: 10.16552/j.cnki.issn1001-1625.2019.10.021

    ZU Kun, XIONG Ergang, SONG Liangying, et al. Review on mechanical properties of high-strength concrete members[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3178-3192(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2019.10.021
    [3] 冯鹏, 陆新征, 叶列平. 纤维增强复合材料建设工程应用技术[M]. 北京: 中国建筑工业出版社, 2011.

    FENG Peng, LU Xinzheng, YE Lieping. Application of fiber reinforced polymer in construction[M]. Beijing: China Architecture and Building Press, 2011(in Chinese).
    [4] 王作虎, 杨菊, 崔宇强, 等. 碳纤维增强树脂复合材料加固钢筋混凝土柱抗震性能的尺寸效应试验[J]. 复合材料学报, 2020, 37(10):2645-2655. doi: 10.13801/j.cnki.fhclxb.20200212.001

    WANG Zuohu, YANG Ju, CUI Yuqiang, et al. Experiment on the size effect of seismic behavior for reinforced concrete columns strengthened by carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2020,37(10):2645-2655(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200212.001
    [5] ILKI A, DEMIR C, BEDIRHANOGLU I, et al. Seismic retrofit of brittle and low strength RC columns using fiber reinforced polymer and cementitious composites[J]. Advances in Structural Engineering,2009,12(3):325-347. doi: 10.1260/136943309788708356
    [6] WANG J Z, YANG J L, CHENG L. Experimental study of seismic behavior of high-strength RC columns strengthened with CFRP subjected to cyclic loading[J]. Journal of Structural Engineering, 2019, 145(2): 04018240.
    [7] WANG D Y, WANG Z Y, SMITH S T, et al. Seismic perfor-mance of CFRP-confined circular high-strength concrete columns with high axial compression ratio[J]. Construction and Building Materials,2017,134:91-103. doi: 10.1016/j.conbuildmat.2016.12.108
    [8] HOU D X, WU Z M, ZHENG J J, et al. Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites[J]. Computers and Concrete,2015,15(1):1-20. doi: 10.12989/cac.2015.15.1.001
    [9] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composites Structures,2019,214:74-94.
    [10] DHAND V, MITTAL G, RHEE K Y, et al. A short review on basalt fiber reinforced polymer composites[J]. Compo-sites Part B: Engineering,2015,73:166-180.
    [11] 吴刚, 魏洋, 吴智深, 等. 玄武岩纤维与碳纤维加固混凝土矩形柱抗震性能比较研究[J]. 工业建筑, 2007, 37(6):14-18, 69. doi: 10.3321/j.issn:1000-8993.2007.06.005

    WU Gang, WEI Yang, WU Zhishen, et al. Comparative study on seismic performance of rectangular concrete columns strengthened with BFRP and CFRP composites[J]. Industrial Construction,2007,37(6):14-18, 69(in Chinese). doi: 10.3321/j.issn:1000-8993.2007.06.005
    [12] OUYANG L J, GAO W Y, ZHEN B, et al. Seismic retrofit of square reinforced concrete columns using basalt and carbon fiber-reinforced polymer sheets: A comparative study[J]. Composite Structures,2017,162:294-307. doi: 10.1016/j.compstruct.2016.12.016
    [13] LI Y, XIE M F, LIU J B. Experimental study on the seismic behaviour of reinforced concrete bridge piers strengthened by BFRP sheets[J]. Advances in Civil Engi-neering,2019,2019:4169421. doi: 10.1155/2019/4169421
    [14] JIANG S F, ZENG X G, SHEN S, et al. Experimental studies on the seismic behavior of earthquake-damaged bridge by using BFRP bars with external BFRP sheets jacketing[J]. Engineering Structures,2016,106:317-331. doi: 10.1016/j.engstruct.2015.10.037
    [15] 邓宗才, 李建辉. 混杂FRP加固腐蚀混凝土柱恢复力模型研究[J]. 工程力学, 2011, 28(8):151-159.

    DENG Zongcai, LI Jianhui. Study on restoring force model of RC corroded columns strengthened with hybrid FRP[J]. Engineering Mechanics,2011,28(8):151-159(in Chinese).
    [16] 董振华, 杜修力, 韩强. FRP约束钢筋混凝土矩形空心桥墩的滞回模型[J]. 中国公路学报, 2015, 28(1):30-37. doi: 10.3969/j.issn.1001-7372.2015.01.005

    DONG Zhenhua, DU Xiuli, HAN Qiang. Hysteretic model of FRP confined RC bridge piers with rectangular hollow section[J]. China Journal of Highway and Transport,2015,28(1):30-37(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.01.005
    [17] 王代玉. FRP加固非延性钢筋混凝土框架结构抗震性能试验与分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    WANG Daiyu. Experimental and analytical investigation of seismic performace of nonductile RC frames retrofitted with FRP[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese).
    [18] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(S1):159-166.

    WANG Qingli, NIU Xianjun, FENG Liming. Parameyric analysis and restoring force model of hysteretic behavior of circular concrete filled CFRP-steel tubular beam-column[J]. Engineering Mechanics,2017,34(S1):159-166(in Chinese).
    [19] JIANG C, WU Y F, WU G. Plastic hinge length of FRP-confined square RC columns[J]. Journal of Composites for Construction,2014,18(4):04014003. doi: 10.1061/(ASCE)CC.1943-5614.0000463
    [20] YOUSSF O, ELGAWADY M A, MILLS J E. Displacement and plastic hinge length of FRP-confined circular reinforced concrete columns[J]. Engineering Structure,2015,101:465-476. doi: 10.1016/j.engstruct.2015.07.026
    [21] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2016[S]. Beijing: China Architecture and Building Press, 2016(in Chinese).
    [22] 中国国家标准化管理委员会. 金属材料室温拉伸试验方法: GB/T 228—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People’s Republic of China. Tensile test method for metallic material at room temperature: GB/T 228—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [23] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [24] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3):36-46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics,2017,34(3):36-46(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [25] CLOUGH R W, PENZIEN J. Dynamics of structures[M]. New York: McGraw Hill Incorporation, 2003.
    [26] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for seismic test of buidings: JGJ/T 101—2015[S]. Beijing: China Architecture and Building Press, 2015(in Chinese).
    [27] TENG J G, JIANG T, LAM L, et al. Refinement of a design-oriented stress-strain model for FRP-confined concrete[J]. Journal of Composites for Construction,2009,13(4):269-278. doi: 10.1061/(ASCE)CC.1943-5614.0000012
    [28] HUANG J T, LI T, ZHU D Y, et al. Compressive behavior of circular and square concrete column externally confined by different types of basalt fiber-reinforced polymer[J]. Advances in Structural Engineering,2020,23(8):1534-1547. doi: 10.1177/1369433219898086
    [29] 过镇海, 时旭东. 钢筋混凝土原理与分析[M]. 北京: 清华大学出版社, 2003.

    GUO Zhenhai, SHI Xudong. Principle and analysis of reinforced concrete[M]. Beijing: Tsinghua University Press, 2003(in Chinese).
    [30] GU D S, WU Y F, WU G, et al. Plastic hinge analysis of FRP confined circular concrete columns[J]. Construction and Building Materials,2012,27(1):223-233. doi: 10.1016/j.conbuildmat.2011.07.056
    [31] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: John Wiley & Sons Incorporation, 1992.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  940
  • HTML全文浏览量:  335
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-07-12
  • 录用日期:  2022-07-28
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回