留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnO2/C3N4二维复合光催化剂的制备及其光催化还原性能

崔言娟 徐红赟 祝玉鑫 李雪 宋艳华

崔言娟, 徐红赟, 祝玉鑫, 等. SnO2/C3N4二维复合光催化剂的制备及其光催化还原性能[J]. 复合材料学报, 2022, 39(8): 3852-3862. doi: 10.13801/j.cnki.fhclxb.20211028.004
引用本文: 崔言娟, 徐红赟, 祝玉鑫, 等. SnO2/C3N4二维复合光催化剂的制备及其光催化还原性能[J]. 复合材料学报, 2022, 39(8): 3852-3862. doi: 10.13801/j.cnki.fhclxb.20211028.004
CUI Yanjuan, XU Hongyun, ZHU Yuxin, et al. Preparation and photocatalytic reduction performance of 2D SnO2/C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3852-3862. doi: 10.13801/j.cnki.fhclxb.20211028.004
Citation: CUI Yanjuan, XU Hongyun, ZHU Yuxin, et al. Preparation and photocatalytic reduction performance of 2D SnO2/C3N4 composite photocatalyst[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3852-3862. doi: 10.13801/j.cnki.fhclxb.20211028.004

SnO2/C3N4二维复合光催化剂的制备及其光催化还原性能

doi: 10.13801/j.cnki.fhclxb.20211028.004
基金项目: 江苏省自然科学基金(BK20190981); 福州大学能源与环境光催化国家重点实验室开放课题(SKLPEE-KF202103)
详细信息
    通讯作者:

    崔言娟,博士,副教授,硕士生导师,研究方向为聚合物半导体材料光催化应用 E-mail:yjcui@just.edu.cn

  • 中图分类号: O643.3

Preparation and photocatalytic reduction performance of 2D SnO2/C3N4 composite photocatalyst

  • 摘要: 可见光响应型二维复合半导体材料是光催化领域研究的重要内容,构建稳定有效的异质结以促进界面电荷传输是二维复合材料研究的关键。将氮化碳纳米片(C3N4)和SnO2纳米片通过煅烧法设计合成面-面堆叠式2D-2D SnO2/C3N4复合半导体。该复合材料保留稳定的C3N4和SnO2的主体结构,同时在界面处形成稳定的异质结。光解水制氢(H2)和活化氧(O2)制过氧化氢(H2O2)的性能测试结果表明,在可见光照射下,SnO2纳米片含量为5wt%的复合样品SnO2/C3N4-5%具有显著提升的制H2活性(54.9 µmol·h−1),约是C3N4纳米片的2.1倍,且具有良好的活性稳定性;在无牺牲剂和助催化剂条件下,SnO2/C3N4-5%活化O2制H2O2的活性达78.9 µmol·L−1·h−1,约是C3N4纳米片的11.9倍。结构表征及电化学测试结果表明,异质结的建立有利于C3N4光生电子向SnO2表面快速转移,抑制了激发电子空穴的复合率,从而大幅提升了光催化还原性能。

     

  • 图  1  SnO2 ((a), (b))、SnO2/C3N4-5% (c) 的SEM图像及SnO2/C3N4-5%的TEM图像 ((d)~(f))

    Figure  1.  SEM images of SnO2((a), (b)), SnO2/C3N4-5% (c) and TEM images of SnO2/C3N4-5% ((d)-(f))

    d—Interplanar crystal spacing

    图  2  SnO2、C3N4 和 SnO2/C3N4的XRD图谱 (a) 以及C3N4、SnO2和 SnO2/C3N4-5%的FTIR图谱 (b)

    Figure  2.  XRD patterns of SnO2, C3N4 and SnO2/C3N4 (a) and FTIR patterns of C3N4, SnO2 and SnO2/C3N4-5% (b)

    图  3  C3N4、SnO2 和SnO2/C3N4-5%的XPS图谱:(a) 全谱图; (b) C1s;(c) N1s;(d) Sn3d

    Figure  3.  XPS spectra of C3N4, SnO2 and SnO2/C3N4-5%: (a) Survey spectra; (b) C1s; (c) N1s; (d) Sn3d

    图  4  SnO2、C3N4 和 SnO2/C3N4-5%的UV-Vis吸收图谱 (a) 和对应带隙值 (b)

    Figure  4.  UV-Vis absorbance spectra (a) and corresponding band gap values (b) of SnO2, C3N4 and SnO2/C3N4-5% samples

    图  5  C3N4和SnO2/C3N4的荧光光谱(PL)

    Figure  5.  Fluorescence spectra (PL) of C3N4 and SnO2/C3N4

    图  6  C3N4、SnO2和SnO2/C3N4-5%的光电流响应图谱 (a) 和阻抗图 (b)

    Figure  6.  Photocurrent response spectrum (a) and impedance curves (b) of C3N4, SnO2 and SnO2/C3N4-5%

    图  7  C3N4、SnO2和SnO2/C3N4产H2活性图 (a),SnO2/C3N4-5%连续产H2活性图 (b),C3N4、SnO2和SnO2/C3N4在O2氛围下制H2O2活性图 (c) 及4 h制H2O2活性比较图 (d)

    Figure  7.  Photocatalytic H2 production of C3N4, SnO2 and SnO2/C3N4 (a), continuous H2 production of SnO2/C3N4-5% (b), continuous H2O2 production of C3N4, SnO2 and SnO2/C3N4 under oxygen conditions (c) and H2O2 production after 4 h illumination (d)

    SnO2/C3N4-5M—Mechanical mixing of SnO2 and C3N4 with a mass ratio of 5wt%

    图  8  SnO2和C3N4纳米片的莫特-肖特基曲线 ((a), (b)) 及光照下SnO2/C3N4异质结界面电荷转移机制图 (c)

    Figure  8.  Mott-Schottky plots of SnO2 and C3N4 nanosheets ((a), (b)), charge transfer mechanism of SnO2/C3N4 heterojunction under illumination (c)

    C—Interfacial capacitance; SCE—Saturated calomel electrode; SHE—Standard hydrogen electrode; F—Faraday constant

    图  9  SnO2/C3N4-5%催化剂在不同氛围下连续产H2O2图 (a) 及•OH捕获PL光谱 (b)

    Figure  9.  Continuous H2O2 production under different conditions (a) and •OH trapping PL spectra of SnO2/C3N4-5% (b)

    表  1  SnO2/C3N4复合物的合成配比及命名

    Table  1.   Synthesis ratio and naming of SnO2/C3N4 compounds

    SampleC3N4/gSnO2/g
    SnO2/C3N4-1%
    SnO2/C3N4-3%
    SnO2/C3N4-5%
    SnO2/C3N4-7%
    SnO2/C3N4-10%
    0.5
    0.5
    0.5
    0.5
    0.5
    0.005
    0.015
    0.025
    0.035
    0.050
    下载: 导出CSV
  • [1] BONACCORSO F, COLOMBO L, YU G H, et al. 2D Materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6271):1246501.
    [2] MENG S G, CHEN C, GU X M. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering[J]. Applied Catalysis B: Environmental, 2021, 285: 119789.
    [3] CHEN X J, WANG J, CHAI Y Q, et al. Efficient photocataly-tic overall water splitting induced by a giant internal electric field of g-C3N4/rGO/PDIP Z-scheme heterojunction[J]. Advanced Materials, 2021, 33(7): 2007479.
    [4] WANG M, TAN G Q, DANG M Y, et al. Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4 heterojunction for photocatalytic NO removal and organic pollutant degradation[J]. Journal of Colloid and Interface Science,2021,582:212-226. doi: 10.1016/j.jcis.2020.08.040
    [5] FANG Y X, FU X Z, WANG X C. Diverse polymeric carbon nitride-based semiconductors for photocatalysis and variations[J]. ACS Materials Letters, 2020, 2(8): 975-980.
    [6] 崔言娟, 王愉雄, 王浩, 等. 石墨相氮化碳的改性剂在环境净化中的应用[J]. 化学进展, 2016, 28(4):428-437.

    CUI Yanjuan, WANG Yuxiong, WANG Hao, et al. Graphitic carbon nitrides: Modifications and applications in environmental purification[J]. Progress in Chemistry,2016,28(4):428-437(in Chinese).
    [7] 梁红玉, 邹赫, 胡绍争, 等. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24):10-16.

    LIANG Hongyu, ZHOU He, HU Shaozheng, et al. Preparation and photocatalytic performance evaluation of carbon nitride in graphite phase Co-doped with binary alkali metal[J]. Materials Reports,2018,32(24):10-16(in Chinese).
    [8] LIN B, XUE C, YAN X, et al. Facile fabrication of novel SiO2/g-C3N4 core-shell nanosphere photocatalysts with enhanced visible light activity[J]. Applied Surface Science,2015,357:346-355. doi: 10.1016/j.apsusc.2015.09.041
    [9] ZHAO S, WU J B, WANG Z P, et al. Ag2CO3-derived Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for hydrogen production from water splitting[J]. International Journal of Hydrogen Energy,2020,45(41):20851-20858. doi: 10.1016/j.ijhydene.2020.05.191
    [10] LUO J H, LIN Z X, ZHAO Y, et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese Journal of Catalysis,2020,41(1):122-130. doi: 10.1016/S1872-2067(19)63490-X
    [11] XU Q L, ZHU B C, JIANG C J, et al. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance[J]. Solar RRL,2018,2(3):1800006. doi: 10.1002/solr.201800006
    [12] LI Y H, GU M L, ZHANG X M, et al. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges[J]. Materials Today, 2020, 41: 270-303.
    [13] 李俊怡, 梁峰, 田亮, 等. 类石墨相氮化碳纳米片的制备研究进展[J]. 化学通报, 2018, 81(5): 387-393.

    LI Junyi, LIANG Feng, TIAN Liang, et al. Progress in preparation method of g-C3N4 nanosheets[J]. Chemistry, 2018, 81(5): 387-393(in Chinese).
    [14] 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4 异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2):581-600.

    MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Composite Sinica,2021,38(2):581-600(in Chinese).
    [15] WANG X J, TIAN X, SUN Y J, et al. Enhanced schottky effect of a 2D-2D CoP/g-C3N4 interface for photocatalytic H2 evolution[J]. Nanoscale,2018,10(26):12315-12321. doi: 10.1039/C8NR03846E
    [16] ONG W J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter[J]. Frontiers in Materials, 2017, 4: 11.
    [17] WANG M, SHEN M, ZHANG L X, et al. 2D-2D MnO2/g-C3N4 heterojunction photocatalyst: In-situ synthesis and enhanced CO2 reduction activity[J]. Carbon,2017,120:23-31. doi: 10.1016/j.carbon.2017.05.024
    [18] PAN T, CHEN D D, XU W C, et al. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation[J]. Journal of Hazar-dous Materials,2020,393:122366. doi: 10.1016/j.jhazmat.2020.122366
    [19] PUGA F, NAVĺO J A, HIDALGO M C. Enhanced UV and visible light photocatalytic properties of synthesized AgBr/SnO2 composites[J]. Separation and Purification Technology,2021,257:117948. doi: 10.1016/j.seppur.2020.117948
    [20] MANJUNATHA A S, PAVITHRA N S, SHIVANNA M, et al. Synthesis of citrus limon mediated SnO2-WO3 nanocomposite: Applications to photocatalytic activity and electrochemical sensor[J]. Journal of Environmental Chemical Engineering,2020,8(6):104500. doi: 10.1016/j.jece.2020.104500
    [21] ZANG Y Z, LI L P, LI X G, et al. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity[J]. Chemical Engineering Journal,2014,246(15):277-286.
    [22] JI H Y, FAN Y M, XU Y G, et al. Construction of SnO2/graphene-like g-C3N4 with enhanced visible light photocatalytic activity[J]. RSC Advances,2017,7(57):36101. doi: 10.1039/C7RA05830F
    [23] WANG X Q, HE Y, XU L, et al. SnO2 particles as efficient photocatalysts for organic dye degradation grown in-situ on g-C3N4 nanosheets by microwave-assisted hydrother-mal method[J]. Materials Science in Semiconductor Processing,2021,121:105298. doi: 10.1016/j.mssp.2020.105298
    [24] WANG L C, CAO S, GUO K, et al. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chinese Journal of Catalysis,2019,40(3):470-475. doi: 10.1016/S1872-2067(19)63274-2
    [25] 谷龙艳, 氧健康, 候兴凯, 等. 一步法制备纳米SnO-SnO2复合材料及其光催化性能增强机制的光生载流子动力学[J]. 复合材料学报, 2018, 35(10):2624-2631.

    GU Longyan, YANG Jiankang, HOU Xingkai, et al. One step synthesis of nano SnO-SnO2 composites and the photoinduced charge carrier dynamics for the enhanced photocatalytic performance[J]. Acta Materiae Compositae Sinica,2018,35(10):2624-2631(in Chinese).
    [26] ZHANG C, ZHOU Y, BAO J, et al. Structure regulation of ZnS@g-C3N4/TiO2 nanospheres for efficient photocataly-tic H2 production under visible-light irradiation[J]. Che-mical Engineering Journal,2018,46(15):226-237.
    [27] JOURSHABANI M, SHARIATINIA Z, BADIEI A. In situ fabrication of SnO2/S-doped g-C3N4 nanocomposites and improved visible light driven photodegradation of methylene blue[J]. Journal of Molecular Liquids,2017,248:688-702. doi: 10.1016/j.molliq.2017.10.110
    [28] RANJITHKUMAR R, LAKSHMANAN P, DEVENDRAN P, et al. Investigations on effect of graphitic carbon nitride loading on the properties and electrochemical perfor-mance of g-C3N4/TiO2 nanocomposites for energy storage device applications[J]. Materials Science in Semiconduc-tor Processing,2021,121:105328. doi: 10.1016/j.mssp.2020.105328
    [29] LIU H J, DU C W, LI M, et al. One-pot hydrothermal synthesis of SnO2/BiOBr heterojunction photocatalysts for the efficient degradation of organic pollutants under visible light[J]. ACS Applied Materials & Interfaces,2018,10(34):28686-28694.
    [30] ZHANG H Q, YANG J X, GUO L, et al. Microwave-aided synthesis of BiOI/g-C3N4 composites and their enhanced catalytic activities for Cr(VI) removal[J]. Chemical Physics Letters,2021,762:138143. doi: 10.1016/j.cplett.2020.138143
    [31] WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis[J]. Applied Catalysis B: Environmental,2017,206:417-425. doi: 10.1016/j.apcatb.2017.01.041
    [32] DANISH M, MUNEER M. Novel ZnSQDs-SnO2/g-C3N4 nanocomposite with enhanced phtocatalytic performance for the degradation of different organic pollutants in aqueous suspension under visible light[J]. Journal of Physics and Chemistry of Solids, 2021, 149: 109785.
    [33] ZHU C, ZHU M M, SUN Y, et al. Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction[J]. ACS Applied Energy Materials,2019,2:8737-8746. doi: 10.1021/acsaem.9b01712
    [34] ZHU Y X, CUI Y J, XIAO B B, et al. Z-scheme 2D/2D g-C3N4/Sn3O4 heterojunction for enhanced visible-light photocatalytic H2 evolution and degradation of ciprofloxacin[J]. Materials Science in Semiconductor Processing,2021,129:105767. doi: 10.1016/j.mssp.2021.105767
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  513
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-09-29
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回