留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海水浸泡与持续荷载耦合作用下GFRP筋的长期锚固长度

常宇飞 王言磊 王密锋 周智

常宇飞, 王言磊, 王密锋, 等. 海水浸泡与持续荷载耦合作用下GFRP筋的长期锚固长度[J]. 复合材料学报, 2022, 39(11): 5122-5134. doi: 10.13801/j.cnki.fhclxb.20220720.001
引用本文: 常宇飞, 王言磊, 王密锋, 等. 海水浸泡与持续荷载耦合作用下GFRP筋的长期锚固长度[J]. 复合材料学报, 2022, 39(11): 5122-5134. doi: 10.13801/j.cnki.fhclxb.20220720.001
CHANG Yufei, WANG Yanlei, WANG Mifeng, et al. Long-term development length of GFRP bar in concrete under coupling effect of seawater immersion and sustained load[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5122-5134. doi: 10.13801/j.cnki.fhclxb.20220720.001
Citation: CHANG Yufei, WANG Yanlei, WANG Mifeng, et al. Long-term development length of GFRP bar in concrete under coupling effect of seawater immersion and sustained load[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5122-5134. doi: 10.13801/j.cnki.fhclxb.20220720.001

海水浸泡与持续荷载耦合作用下GFRP筋的长期锚固长度

doi: 10.13801/j.cnki.fhclxb.20220720.001
基金项目: 国家自然科学基金面上项目(51978126;51778102)
详细信息
    通讯作者:

    周智,博士,教授,博士生导师,研究方向为纤维增强树脂材料制品与海洋土木工程结构 E-mail: zhouzhi@dlut.edu.cn

  • 中图分类号: TU318+.1

Long-term development length of GFRP bar in concrete under coupling effect of seawater immersion and sustained load

Funds: The National Nature Science Foundation of China (51978126; 51778102)
  • 摘要: 为了获得海水浸泡与持续荷载耦合作用下玻璃纤维增强树脂复合材料(Glass fiber-reinforced polymer,GFRP)筋的长期锚固长度计算公式,首先搜集了81个拔出破坏的GFRP筋混凝土梁式试件的数据,提出了GFRP筋的短期锚固长度计算公式。然后测试了在海水浸泡与持续荷载耦合作用下GFRP筋拉拔试件的粘结强度,结合强度预测理论,得到了粘结强度折减系数。采用粘结强度折减系数及基于他人试验获得的GFRP筋抗拉强度折减系数修正了短期锚固长度计算公式,最终建立了海水浸泡与持续荷载耦合作用下适用于拔出破坏的GFRP筋长期锚固长度计算公式。研究结果表明:GFRP筋的长期锚固长度变化主要是由粘结强度和抗拉强度的减小造成的。经过海水浸泡与持续荷载耦合作用50年后,当环境的年平均温度为8℃、13℃、18℃、23℃和28℃时,GFRP筋的粘结强度折减系数分别为0.60、0.60、0.56、0.56和0.52。相应的GFRP筋抗拉强度折减系数分别为0.63、0.56、0.49、0.42和0.35。

     

  • 图  1  GFRP筋短期粘结强度试验值与计算值的对比

    Figure  1.  Comparison between experimental and calculated values of GFRP bar’s short-term bond strength

    图  2  GFRP筋混凝土拉拔试件

    Figure  2.  GFRP-reinforced concrete pullout specimen

    图  3  GFRP筋的尺寸及表面特征

    Figure  3.  Dimensions and surface conditions of GFRP bar

    图  4  施加持续荷载

    Figure  4.  Sustained load application

    图  5  浸泡在海水中的拉拔试件

    Figure  5.  Pullout specimens in seawater

    图  6  拉拔试验装置

    Figure  6.  Setup of pullout test

    图  7  GFRP筋的长期粘结强度预测

    R10—Standard reduction of bond strength in percent per decade

    Figure  7.  Prediction of long-term bond strength of GFRP bars

    图  8  GFRP筋抗拉强度保留率与时间的对数之间的关系

    T—Temperatures; tD—Design service days; tS—Service days at T1 corresponding to the tensile strength retention at design service days at T3; δ1—Tensile strength reduction at T1 for 365 days; δ2—Tensile strength reduction at T1 from 365 days to design service days; δ3—Percentage loss of tensile strength as the temperature rises from T1 to T3; α—Angle between the tensile strength reduction curve at T1 and the horizontal line

    Figure  8.  Relation between GFRP bar’s tensile strength retention and logarithmic time

    图  9  GFRP筋的抗拉强度保留率变化规律

    Figure  9.  Variations of the GFRP bar’s tensile strength retention

    表  1  玻璃纤维增强树脂复合材料(GFRP)筋混凝土梁式构件粘结试验数据

    Table  1.   Data from the bond test of concrete beam reinforced with glass fiber-reinforced polymer (GFRP) bars

    Data sourcesSpecimen$ f_{\text{c}}' $/MPadb/mmC/mmle/mmu/MPaSurface condition
    [2] 46 B3 B2 27.6 19 48 76 17.1 WH
    46 B6 B2 27.6 19 48 152 9.3
    46 B12 B2 39.2 19 48 305 5.6
    86 B12 B2 47.7 19 48 305 5.7
    46 B16 B4 39.2 19 86 406 5.4
    86 B16 B4 47.7 19 86 406 5.2
    49 B4 B2 27.6 29 73 102 15.2
    49 B8 B2 27.6 29 73 203 8.5
    49 B22 B2 39.7 29 73 559 4.2
    89 B22 B2 44.8 29 73 559 4.0
    49 B26 B4 39.7 29 132 660 3.9
    89 B26 B4 47.3 29 132 660 3.8
    [3] G-10-0-100 33.3 10 38 150 0.8 WH+SC
    G-19-0-190 33.3 19 38 285 3.4
    [5] I 30-1-f 24.1 16 50 40 18.49 WH+SC
    I 30-1-s 24.1 16 50 40 14.88
    I 30-2-s 24.1 16 50 80 14.88
    [12] G8 Sf/4.5-11-4.5-5-1/C30 29.1 8 36 40 11.0 SC
    G8 Sf/4.5-11-4.5-10-1/C30 29.1 8 36 80 7.8
    G8 Sf/4.5-11-4.5-20-1/C20 17.3 8 36 160 5.1
    G8 Sf/4.5-11-4.5-10-1/C40 41.4 8 36 80 7.6
    G8 Sf/4.5-11-4.5-10-0/C20 17.3 8 36 80 5.0
    G8 Sf/2.5-15-4.5-10-1/C30 29.1 8 20 80 8.5
    G8 Sf/4.5-11-2.5-10-1/C30 29.1 8 20 80 7.5
    G8 Sf/4.5-11-3.5-10-1/C30 29.1 8 28 80 8.2
    G6 Sf/4.5-17.7-4.5-10-1/C30 29.1 6 36 60 13.6
    G12 Sf/4.5-11-4.5-10-1/C30 29.1 12 36 120 6.1
    G8 Sf/4.5-3.75-4.5-10-1/C30 29.1 8 15 80 5.8
    G8 Sf/4.5-7-4.5-10-1/C30 29.1 8 28 80 8.8
    G8 WO/4.5-11-4.5-10-1/C30 29.1 8 36 80 11.4 WO
    G8 WO/4.5-11-4.5-20-1/C20 17.3 8 36 160 8.8
    G8 WO/4.5-11-4.5-10-1/C20 17.3 8 36 80 9.3
    G8 WO/4.5-11-4.5-10-1/C35 37.3 8 36 80 14.7
    G8 WO/4.5-11-4.5-10-1/C40 41.4 8 36 80 11.8
    G8 WO/4.5-11-4.5-10-0/C20 17.3 8 36 80 9.3
    G8 WO/4.5-11-2.5-10-1/C30 29.1 8 20 80 11.4
    G8 WO/4.5-11-3.5-10-1/C30 29.1 8 28 80 11.5
    G12 WO/4.5-11-4.5-10-1/C30 29.1 12 54 120 10.2
    G8 WO/4.5-7-4.5-10-1/C30 29.1 8 28 80 11.5
    G12 WW/4.5-11-4.5-10-1/C30 29.1 12 54 120 11.4 WW
    G8 R/4.5-11-4.5-10-1/C30 29.1 8 36 80 15.1 R
    G8 R/4.5-11-4.5-20-1/C20 17.3 8 36 160 9.6
    G8 R/4.5-11-4.5-10-1/C20 17.3 8 36 80 10.7
    G8 R/4.5-11-4.5-10-1/C40 41.4 8 36 80 17.4
    G8 R/4.5-11-4.5-10-0/C20 17.3 8 36 80 11.1
    G8 R/2.5-15-4.5-10-1/C30 29.1 8 20 80 15.8
    G8 R/4.5-11-2.5-10-1/C30 29.1 8 20 80 13.8
    G8 R/4.5-11-3.5-10-1/C30 29.1 8 28 80 16.0
    G8 R/4.5-3.75-4.5-10-1/C30 29.1 8 15 80 12.8
    G8 R/4.5-7-4.5-10-1/C30 29.1 8 28 80 15.6
    G6 R/4.5-17.7-4.5-10-1/C30 29.1 6 27 60 13.1
    G12 R/4.5-11-4.5-10-1/C30 29.1 12 54 120 10.7
    [14] 31 12.7 50 76.2 11.3 WH+SC
    31 15.9 50 95.4 10.6
    31 19.1 50 114.6 7.1
    31 25.4 50 152.4 7.0
    31 19.1 50 305.6 5.3
    31 25.4 50 406.4 5.1
    31 12.7 50 127 10.6
    31 15.9 50 159 7.3
    31 19.1 50 191 6.6
    31 25.4 50 254 6.4
    31 12.7 50 127 12.3
    31 15.9 50 159 10.8
    31 25.4 50 254 7.4 WH
    [15] T1.25 L15 52 12 15 180 2.9 WH
    T1.25 L20 52 12 15 240 1.7
    T2 L15 52 12 25 180 2.7
    T2 L20 52 12 25 240 1.7
    T1.25 L20-C 52 12 15 240 1.9
    T2 L20-C 52 12 25 240 2.2
    [16] GS-12-5.1 32.2 12 50 60 14.8 SC
    GS-12-5.2 32.2 12 50 60 14.5
    GS-12-5.3 32.2 12 50 60 12.7
    GS-16-5.1 31.9 16 50 80 11.7
    GS-16-5.2 31.9 16 50 80 10.3
    GS-16-5.3 31.9 16 50 80 12.1
    GS-18-5.1 32.2 18 50 90 10.0
    GS-18-5.2 32.2 18 50 90 11.6
    GS-18-5.3 32.2 18 50 90 11.8
    Notes: $ f_{\text{c}}' $—Compressive strength of the concrete cylinder with a size of 150 mm×300 mm; db—Bar diameter; C—Smaller of the distance from the concrete surface to the center of the bar and 1/2 of the spacing between the adjacent bars; le—Embedment length of the GFRP bar in the concrete; u—Bond strength of the GFRP bar; WH—Wrapped in a helical pattern; SC—Sand coated; WO—Wound; WW—Widely-spaced and tight wrapping; R—Ribbed; For the specimen name in reference [2], First number—Compressive strength of concrete, Second number—Bar diameter, Third number—Embedment length, Fourth number—Ratio of the clear concrete cover to the bar diameter, First letter B—Beam specimen, Second letter B—Bar is casted at the bottom of the beam; For the specimen name in reference [3], G—Specimen with GFRP bar, First number—Bar diameter, Second number—Concrete mix, Third number—Embedment length; For the specimen name in reference [5], I—First test method, First number—Compressive strength of concrete, Second number—Embedment length, f—GFRP bar, s—Steel bar; For the specimen name in reference [12], the letters and numbers represents the GFRP bar, bar diameter, surface properties of bar, side concrete cover, bar span, bottom concrete cover, embedment length, stirrup effect, strength class of concrete, respectively; For the specimen name in reference [15], R—GFRP ribbed bar, First number—Ratio of the concrete cover to the clear spacing between the splices, L and the second number—Splice length, C—Steel confinement; For the specimen name in reference [16], GS—GFRP bar with sand-coated surface, First number—Bar diameter, Second number—Embedment length, Third number—Specimen number among three identical specimens.
    下载: 导出CSV

    表  2  GFRP筋混凝土梁式构件粘结性能参数的取值范围

    Table  2.   Parameter ranges of bond performance of concrete beam reinforced with GFRP bars

    Parameter $ f_{\text{c}}' $/MPa db/mm C/db le/db u/MPa
    Maximum 52.0 29.0 6.0 22.8 22.1
    Minimum 17.3 6.0 1.3 2.5 0.8
    Average 32.2 13.8 3.4 11.0 9.5
    Standard deviation 8.7 6.6 1.0 5.2 4.5
    下载: 导出CSV

    表  3  混凝土立方体抗压强度和圆柱体抗压强度的关系

    Table  3.   Relationship between cube and cylinder compressive strengths of concrete

    fcu/MPa$ f_{\text{c}}' $/MPa
    10 8
    15 12
    20 16
    25 20
    30 25
    37 30
    45 35
    50 40
    55 45
    60 50
    67 55
    75 60
    85 70
    95 80
    105 90
    115 100
    Note: fcu—Compressive strength of the concrete cube with a side length of 150 mm.
    下载: 导出CSV

    表  4  GFRP筋混凝土拉拔试件的粘结强度

    Table  4.   Bond strength of GFRP-reinforced concrete pullout specimen

    SpecimenImmersion
    time/days
    Sustained
    load
    Bond strength
    Average
    /MPa
    Retention
    /%
    P0 N0No26.4100.0
    P90 N90No27.7104.9
    P90 L90Yes27.2103.0
    P180 N180No25.897.7
    P180 L180Yes25.697.0
    P270 N270No24.492.4
    P270 L270Yes23.589.0
    Notes: The naming method of all the specimens follows the form of “PAB”. P—Pullout specimen; A—Immersion time; B—Sustained load applied on the specimen, where L and N indicate the specimens with and without sustained load, respectively.
    下载: 导出CSV

    表  5  GFRP筋粘结强度折减系数计算结果

    Table  5.   Calculation of reduction factors of GFRP bar’s bond strength

    Annual average temperature/℃nmonTnSLndSeawater immersionSeawater immersion + Sustained load
    R101/ηbR101/ηb
    810.02.70110.65130.60
    130.00.650.60
    180.50.610.56
    230.50.610.56
    281.00.580.52
    Notes: nmo, nT, nSL, nd—Parameters related to the humidity, temperature, structure’s design service life and bar diameter, respectively; R10—Standard reduction of bond strength in percent per decade; ηb—Parameter related to the reduction factor of the GFRP bar’s bond strength.
    下载: 导出CSV

    表  6  GFRP筋的抗拉强度试验数据

    Table  6.   Test data of GFRP bar’s tensile strength

    SpecimenTensile strength
    Average/MPaRetention/%
    BC1054100.0
    B/32/21/0103297.9
    B/32/42/0100795.5
    B/32/63/0103698.3
    B/55/21/096691.7
    B/55/42/098093.0
    B/55/63/094889.9
    B/40/21/2091586.8
    B/40/42/2086582.0
    B/40/63/2078174.1
    B/55/21/2072468.7
    B/55/42/2077373.4
    B/55/63/2061758.6
    Notes: BC—Control specimen. The naming method of all the conditioned specimens follows the form of “B/a1/a2/a3”, in which B is GFRP bar, a1 is olution temperature in ℃, a2 is immersion time in day, and a3 is sustained load level in %.
    下载: 导出CSV

    表  7  GFRP筋抗拉强度折减系数计算结果

    Table  7.   Calculation of reduction factors of GFRP bar’s tensile strength

    Annual average temperature/℃tYβSeawater immersionSeawater immersion + Sustained load
    δ1ρ$ {r_{32 {\text{-}} {T_3}}} $ηtδ1ρ$ {r_{40 {\text{-}} {T_3}}} $ηt
    85010.07−0.05730.020.930.41−0.230.010.63
    130.050.910.030.56
    180.110.890.060.49
    230.240.870.110.42
    280.540.850.220.35
    Notes: tY—Design service life of structures; β—Humidity coefficient; δ1—Reduction of GFRP bar’s tensile strength after 365 days at the temperature of T1; ρ—Slope of the time-dependent tensile strength curve of GFRP bar; $ {r_{32 - {T_3}}} $—Time conversion factor under seawater immersion; $ {r_{40 - {T_3}}} $—Time conversion factor under the coupling effect of seawater immersion and sustained load; ηt—Parameter related to the reduction factor of the GFRP bar’s tensile strength.
    下载: 导出CSV

    表  8  GFRP筋长期粘结强度计算公式总结

    Table  8.   Summary of long-term bond strength equations of GFRP bar

    Annual average temperature/°CLong-term bond strength equations
    Seawater immersionSeawater immersion + Sustained load
    8$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.131 + 0.204\dfrac{C}{{{d_{\text{b}}}}} + 4.906\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.121 + 0.188\dfrac{C}{{{d_{\text{b}}}}} + 4.528\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$
    13$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.131 + 0.204\dfrac{C}{{{d_{\text{b}}}}} + 4.906\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.121 + 0.188\dfrac{C}{{{d_{\text{b}}}}} + 4.528\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$
    18$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.123 + 0.192\dfrac{C}{{{d_{\text{b}}}}} + 4.604\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.113 + 0.176\dfrac{C}{{{d_{\text{b}}}}} + 4.226\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$
    23$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.123 + 0.192\dfrac{C}{{{d_{\text{b}}}}} + 4.604\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.113 + 0.176\dfrac{C}{{{d_{\text{b}}}}} + 4.226\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$
    28$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.117 + 0.182\dfrac{C}{{{d_{\text{b}}}}} + 4.377\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$$\dfrac{u}{{\sqrt {f_{\text{c}}'} }} = - 0.105 + 0.163\dfrac{C}{{{d_{\text{b}}}}} + 3.924\dfrac{{{d_{\text{b}}}}}{{{l_{\text{e}}}}}$
    下载: 导出CSV

    表  9  GFRP筋的长期锚固长度计算公式总结

    Table  9.   Summary of long-term development length equations of GFRP bar

    Annual average temperature/°CLong-term development length equations
    Seawater immersionSeawater immersion + Sustained load
    8${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.93 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 19.624\right)/\left(0.816\dfrac{C}{{{d_{\text{b}}}}} - 0.524\right)$${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.63 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 18.112\right)/\left(0.752\dfrac{C}{{{d_{\text{b}}}}} - 0.484\right)$
    13${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.91 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 19.624\right)/\left(0.816\dfrac{C}{{{d_{\text{b}}}}} - 0.524\right)$${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.56 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 18.112\right)/\left(0.752\dfrac{C}{{{d_{\text{b}}}}} - 0.484\right)$
    18${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.89 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 18.416\right)/\left(0.768\dfrac{C}{{{d_{\text{b}}}}} - 0.492\right)$${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.49 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 16.904\right)/\left(0.704\dfrac{C}{{{d_{\text{b}}}}} - 0.452\right)$
    23${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.87 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 18.416\right)/\left(0.768\dfrac{C}{{{d_{\text{b}}}}} - 0.492\right)$${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.42 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 16.904\right)/\left(0.704\dfrac{C}{{{d_{\text{b}}}}} - 0.452\right)$
    28${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.85 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 17.508\right)/\left(0.728\dfrac{C}{{{d_{\text{b}}}}} - 0.468\right)$${l_{\text{d}}} = {d_{\text{b}}} \left(\dfrac{{0.35 f_{{\text{fu}}}^*}}{{\sqrt {f_{\text{c}}'} }} - 15.696\right)/\left(0.652\dfrac{C}{{{d_{\text{b}}}}} - 0.420\right)$
    Note: $f_{{\text{fu}}}^*$—Guaranteed tensile strength of the GFRP bar.
    下载: 导出CSV

    表  10  GFRP筋的长期与短期锚固长度之比

    Table  10.   Ratios of GFRP bar’ long-term and short-term development lengths

    Annual average temperature/°CConditions for long-term length
    Seawater immersionSeawater immersion + Sustained load
    81.431.05
    131.400.93
    181.460.88
    231.430.75
    281.470.67
    下载: 导出CSV
  • [1] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9):99-104.

    FENG Peng. Development and application of composite in civil engineering[J]. Fiber Reinforced Plastics/Composites,2014(9):99-104(in Chinese).
    [2] EHSANI M R, SAADATMANESH H, TAO S. Design recommendations for bond of GFRP rebars to concrete[J]. Jour-nal of Structural Engineering,1996,122:247-254. doi: 10.1061/(ASCE)0733-9445(1996)122:3(247)
    [3] OKELO R. Realistic bond strength of FRP rebars in NSC from beam specimens[J]. Journal of Aerospace Engineering,2007,20(3):133-140. doi: 10.1061/(ASCE)0893-1321(2007)20:3(133)
    [4] WAMBEKE B W, SHIELD C K. Development length of glass fiber-reinforced polymer bars in concrete[J]. ACI Structural Journal,2006,103(1):11-17.
    [5] XUE W, ZHENG Q, YANG Y, et al. Bond behavior of sand-coated deformed glass fiber reinforced polymer rebars[J]. Journal of Reinforced Plastics and Composites,2014,33(10):895-910. doi: 10.1177/0731684413520263
    [6] BASARAN B, KALKAN I. Development length and bond strength equations for FRP bars embedded in concrete[J]. Composite Structures,2020,251:112662. doi: 10.1016/j.compstruct.2020.112662
    [7] CHOI D U, CHUN S C, HA S S. Bond strength of glass fibre-reinforced polymer bars in unconfined concrete[J]. Engi-neering Structures,2012,34:303-313. doi: 10.1016/j.engstruct.2011.08.033
    [8] American Concrete Institute. Guide for the design and construction of concrete reinforced with FRP bars: ACI 440.1 R-15[S]. Farmington Hills: American Concrete Institute, 2015.
    [9] Canadian Standards Association. Design and construction of building structures with fibre-reinforced polymers: CAN/CSA S806-12[S]. Mississauga: Canadian Standards Association, 2012.
    [10] Canadian Standards Association. Canadian highway bridge design code: CAN/CSA S6: 19[S]. Toronto: Canadian Standards Association, 2014.
    [11] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB/T 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB/T 50608—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [12] BASARAN B, KALKAN I. Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests[J]. Composite Structures,2020,242:112185. doi: 10.1016/j.compstruct.2020.112185
    [13] American Concrete Institute. Guide test methods for fiber-reinforced polymer (FRP) for reinforcing or strengthening concrete and masonry structures: ACI 440.3 R-12[S]. Farmington Hills: American Concrete Institute, 2012.
    [14] TIGHIOUART B, BENMOKRANE B, GAO D. Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars[J]. Construction and Building Materials,1998,12:453-462. doi: 10.1016/S0950-0618(98)00027-0
    [15] HARAJLI M, ABOUNIAJ M. Bond performance of GFRP bars in tension: Experimental evaluation and assessment of ACI 440 guidelines[J]. Journal of Composites for Construction,2010,14(6):659-668. doi: 10.1061/(ASCE)CC.1943-5614.0000139
    [16] SCZECH D, KOTYNIA R. Beam bond tests of GFRP and steel reinforcement to concrete[J]. Archives of Civil Engi-neering,2018,64(4):243-256. doi: 10.2478/ace-2018-0072
    [17] European Committee for Standardization. Concrete-Specification, performance, production and conformity: EN 206: 2013+A1: 2016[S]. Brussels: European Committee for Standardization, 2016.
    [18] XIAO J, QIANG C, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials,2017,155:1101-1111. doi: 10.1016/j.conbuildmat.2017.08.130
    [19] International Federation for Structural Concrete. FRP reinforcement in RC structures: Fib Bulletin 40[S]. Lausanne: International Federation for Structural Concrete, 2007.
    [20] WEBER A. Advanced reinforcement technology with GFRP rebar[C]//The 2nd International Fib Congress. Naples, 2006.
    [21] 国家气象科学数据中心. 全球气候背景[EB/OL]. (2021-12-30) [2022-3-31]. http://data.cma.cn/site/theme.html.

    China Meteorological Data Service Centre. Global climate background[DB/OL]. (2021-12-30) [2022-3-31].http://data.cma.cn/site/theme.html(in Chinese).
    [22] 中华人民共和国住房和城乡建设部. 建筑结构可靠性设计统一标准: GB/T 50068—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Unified standard for reliability design of building structures: GB/T 50068—2018[S]. Beijing: China Architecture & Building Press, 2020(in Chinese).
    [23] HUANG J, ABOUTAHA R. Environmental reduction factors for GFRP bars used as concrete reinforcement: New scientific approach[J]. Journal of Composites for Construction,2010,14(5):479-486. doi: 10.1061/(ASCE)CC.1943-5614.0000122
    [24] BANK L C, GENTRY T R, THOMPSON B P, et al. A model specification for FRP composites for civil engineering structures[J]. Construction and Building Materials,2003,17:405-437. doi: 10.1016/S0950-0618(03)00041-2
    [25] BENMOKRANE B, NAZAIR C, LORANGER M A, et al. Field durability study of vinyl-ester-based GFRP rebars in concrete bridge barriers[J]. Journal of Bridge Engineering,2018,23(12):04018094. doi: 10.1061/(ASCE)BE.1943-5592.0001315
    [26] MUFTI A A, BANTHIA N, BENMOKRANE B, et al. Durabi-lity of GFRP composite rods[J]. ACI Concrete International,2007,29(2):37-42.
    [27] ALSAYED S H, ALHOZAIMY A M, ALSALLOUM Y A, et al. Durability of the new generation of GFRP rebars under severe environments[C]//The 2nd International Conference on Durability of Fibre Reinforced Polymer (FRP) Composites for Construction (CDCC 02). Montreal, 2002.
    [28] CHEN Y, DAVALOS J F, RAY I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures,2007,78:101-111. doi: 10.1016/j.compstruct.2005.08.015
    [29] D’ANTINO T, PISANI M A. Influence of sustained stress on the durability of glass FRP reinforcing bars[J]. Construction and Building Materials,2018,187:474-486. doi: 10.1016/j.conbuildmat.2018.07.175
    [30] BENMOKRANE B, BROWN V L, ALI A H, et al. Reconsideration of the environmental reduction factor CE for GFRP reinforcing bars in concrete structures[J]. Journal of Composites for Construction,2020,24(4):06020001. doi: 10.1061/(ASCE)CC.1943-5614.0001040
    [31] WANG Z, ZHAO X L, XIAN G, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science,2018,138:200-218. doi: 10.1016/j.corsci.2018.04.002
    [32] BENMOKRANE B, MANALO A, BOUHET J C, et al. Effects of diameter on the durability of glass fiber-reinforced polymer bars conditioned in alkaline solution[J]. Journal of Composites for Construction,2017,21(5):04017040. doi: 10.1061/(ASCE)CC.1943-5614.0000814
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  244
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-18
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-07-20
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回