留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成粗聚丙烯纤维与水泥砂浆界面黏结力学性能

李长辉 陈雪芳 张献民 王慧颖

李长辉, 陈雪芳, 张献民, 等. 合成粗聚丙烯纤维与水泥砂浆界面黏结力学性能[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 李长辉, 陈雪芳, 张献民, 等. 合成粗聚丙烯纤维与水泥砂浆界面黏结力学性能[J]. 复合材料学报, 2022, 40(0): 1-14
Changhui LI, Xuefang CHEN, Xianmin ZHANG, Huiying WANG. Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar[J]. Acta Materiae Compositae Sinica.
Citation: Changhui LI, Xuefang CHEN, Xianmin ZHANG, Huiying WANG. Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar[J]. Acta Materiae Compositae Sinica.

合成粗聚丙烯纤维与水泥砂浆界面黏结力学性能

基金项目: 国家重点研发计划项目 (2021 YFB2600500);天津市技术创新引导专项基金企业科技特派员项目(21 YDTPJC00470);中央高校基本科研业务费项目中国民航大学专项资助(3122019106)
详细信息
    通讯作者:

    李长辉,博士研究生,讲师,硕士生导师,研究方向为机场工程防灾减灾,高性能混凝土材料,机场工程新材料 E-mail: lichanghui0531@126.com

  • 中图分类号: TB330.1

Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar

  • 摘要: 纤维嵌入水泥基材料中的界面黏结力学性能对纤维增强混凝土材料的力学性能起着重要的作用。单纤维拉拔试验可以较好地模拟纤维与水泥基体材料界面间的受力条件,因此考虑三种纤维直径(0.2 mm、0.6 mm、0.8 mm)、三种纤维埋置长度(10 mm、20 mm、30 mm)和三种纤维表面性状(压痕型、波浪型、光圆型)与三种水泥砂浆基体水胶比(0.66、0.51、0.41)影响因素,进行了单根粗聚丙烯纤维从水泥砂浆基体中的拔出试验,使用SEM扫描电镜观测了纤维被拔出后的形貌特征,通过ABAQUS有限元建立了纤维拔出过程的数值模型,以研究单根纤维与水泥基界面间的剪切应力。同时将试验结果和模拟结果进行了数值拟合,得到了各因素对界面黏结力学性能的影响规律:(1)水泥砂浆的最佳水胶比为0.41~0.49;(2)合成粗聚丙烯纤维埋置长度最佳为8~10 mm,最佳纤维直径在0.26~0.39 mm范围;(3)纤维表面性状为压痕型时,纤维在水泥基材料中的利用率较大,并且与水泥砂浆的界面黏结性能良好。

     

  • 图  1  不同表面性状和长径比的合成粗聚丙烯纤维

    Figure  1.  Synthetic crude polypropylene fibers with different surface properties and aspect ratios

    图  2  拉拔试件尺寸及试件图

    Figure  2.  Drawing test size and specimen diagram

    图  3  各影响因素下合成粗聚丙烯纤维/水泥砂浆的荷载-滑移曲线

    Figure  3.  Load-slip curves under various influencing factors of synthetic coarse polypropylene fiber/cement mortar

    图  4  各影响因素下合成粗聚丙烯纤维在水泥砂浆基体中的利用率

    Figure  4.  Utilization rate of synthetic coarse polypropylene fiber in cement mortar matrix under various influencing factors

    图  5  合成粗聚丙烯纤维从水泥砂浆基体中拔出后的表面及附着物微观形貌

    Figure  5.  Micromorphologies of the surface and attachments after synthetic coarse polypropylene fibers being pulled out from cement mortar matrix

    图  6  不同表面性状合成粗聚丙烯纤维与水泥砂浆基体拉拔试验的有限元模拟

    Figure  6.  Finite element simulation of drawing test of synthetic coarse polypropylene fibers with different surface properties from cement mortar matrix

    7  合成粗聚丙烯纤维/水泥砂浆界面黏结仿真应力云图

    7.  Simulation stress contours of interfacial bonding between synthetic coarse polypropylene fibers and cement mortar matrix

    图  8  合成粗聚丙烯纤维/水泥砂浆界面黏结强度模拟值与试验值比较

    Figure  8.  Comparison of simulated and experimental values of interfacial bonding strength between synthetic coarse polypropylene fibers and cement mortar matrix

    图  9  合成粗聚丙烯纤维/水泥砂浆界面黏结强度随各影响因素的变化规律

    Figure  9.  Variation law of interfacial bond strength of synthetic crude polypropylene fiber/cement mortar with various influencing factors

    The black line in the above figure represents the average bond strength, and the red line represents the equivalent bond strength

    表  1  合成粗聚丙烯纤维与砂浆基体组合方案

    Table  1.   Combination scheme of synthetic crude polypropylene fiber and mortar matrix

    NumberingMatrix strengthEmbedded length
    Lf/mm
    Diameter
    d/mm
    Surface featureOriginal fiber length L0/mm
    JT-1M25200.8Smooth type50
    JT-2M35200.8Smooth type50
    JT-3M45200.8Smooth type50
    CHD-1M35100.8Smooth type30
    CHD-2M35200.8Smooth type50
    CHD-3M35300.8Smooth type70
    ZHJ-1M35200.2Smooth type50
    ZHJ-2M35200.6Smooth type50
    ZHJ-3M35200.8Smooth type50
    XZH-1M35200.8Indentation type50
    XZH-2M35200.8Wavy type50
    XZH-3M35200.8Smooth type50
    Notes: JT represents the matrix strength of specimens; CHD represents the embedded length of fiber; ZHJ represents the diameter of fiber; XZH represents surface feature of fiber.
    下载: 导出CSV

    表  2  砂浆基体强度配合比

    Table  2.   Mortar matrix strength mix ratio

    Matrix strength numberCementSilica fumeFly ashSandWater to binder ratioWater reducer
    M250.80.10.13.30.660.005
    M350.80.10.12.50.510.005
    M450.80.10.12.00.410.005
    下载: 导出CSV

    表  3  砂浆抗压抗折强度测定结果

    Table  3.   Determination results of compressive and flexural strength of mortar

    Matrix strength numberWater to binder ratio28 d compressive strength/MPa28 d flexural
    strength/MPa
    M250.6631.87.2
    M350.5155.29.7
    M450.4160.011.2
    下载: 导出CSV

    表  4  各因素影响下的合成粗聚丙烯纤维/水泥砂浆界面黏结强度试验结果

    Table  4.   Test results of interfacial bond strength under the influence of various factors of synthetic coarse polypropylene fiber/cement mortar

    Influencing factorPull out peak
    load/N
    average bond
    strength/MPa
    Pulling work/
    (N·mm)
    Equivalent bond
    strength/MPa
    Matrix strength/MPa M25 155.00 3.84 2206.66 4.39
    M35 230.42 5.54 3443.19 6.85
    M45 231.04 5.85 3347.68 6.66
    Embedded length/mm 10 152.40 7.38 1372.46 10.93
    20 236.97 5.67 3711.92 7.39
    30 234.74 3.86 4665.11 4.13
    Fiber diameter/mm 0.2 87.63 8.37 1196.21 9.52
    0.6 268.29 8.57 5077.73 13.48
    0.8 238.29 5.60 4697.30 9.35
    Surface features Indentation type 228.34 5.65 3582.00 7.13
    Wavy type 226.46 5.53 3153.85 6.28
    Smooth type 152.93 3.88 2367.38 4.71
    下载: 导出CSV

    表  5  三种砂浆强度的模型内聚力参数

    Table  5.   Model cohesion parameters for three mortar strengths

    Matrix strength classDensity/
    (kg·m−3)
    ElasticityPlasticity
    Elastic modulus/MPaPoisson's ratioCompressive yield stress/MPaPlastic
    strain
    M252640300.25150
    300.001
    M352710310.25400
    500.0012
    M452780320.25450
    600.0015
    下载: 导出CSV

    表  6  水泥砂浆其他单元参数

    Table  6.   Other unit parameters of cement mortar

    Expansion angleEccentricity fb0/fc0kViscosity parameter
    300.11.160.66670.005
    Notes: fb0/fc0 and k are the set values of concrete damage shaping in abaqus.
    下载: 导出CSV

    表  7  纤维模型弹塑性参数

    Table  7.   Elastic-plastic parameters of fiber model

    Density/
    (kg·m−3)
    Poisson's ratioPlasticity
    Yield stress/GPaPlastic strain
    9100.30.50
    10.027
    30.081
    60.135
    100.189
    下载: 导出CSV

    表  8  纤维长径比和表面性状等设置参数

    Table  8.   Setting parameters such as fiber aspect ratio and surface properties

    NumberingFiber diameter/mmEmbedded length/mmSurface featureElastic modulus/GPa
    10.220Smooth type15
    20.620Smooth type15
    30.810Smooth type10
    40.820Smooth type10
    50.830Indentation type10
    60.820Wavy type10
    70.820Smooth type10
    下载: 导出CSV

    表  9  粘性接触处相关参数设置

    Table  9.   Related parameter settings of viscous contact

    Viscosity behaviorKnnKssKtt
    9.375×1099.375×1099.375×109
    DamageNormal onlyShear−1 onlyShear−2 onlyFracture energyViscosity coefficient
    5.9×1095.9×1095.9×10910.01
    Notes: Knn, Kss, Ktt are the specified stiffness coefficients for viscous behavior in abaqus.
    下载: 导出CSV
  • [1] HUI Z, RENA Y. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study[J]. Materials,2016,9(10):800. doi: 10.3390/ma9100800
    [2] 惠弘毅, 李宗利, 吕从聪. 混凝土细观力学研究方法及进展评述[J]. 混凝土, 2017(9):26-30. doi: 10.3969/j.issn.1002-3550.2017.09.007

    HUI H Y, LI Z L, LV Congcong. A review of the research methods and progress of concrete meso-mechanics[J]. Concrete,2017(9):26-30(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.09.007
    [3] 何锐. 高韧性水泥混凝土铺装材料特性与结构分析[D]. 长安大学, 2013.

    HE R. Characteristics and structural analysis of high toughness cement concrete paving materials[D]. Chang'an University, 2013(in Chinese).
    [4] 陈公增, 马绪荣. 纤维-水泥基材料的界面黏结性能[J]. 筑路机械与施工机械化, 2018, 35(7):75-78. doi: 10.3969/j.issn.1000-033X.2018.07.009

    CHEN G Z, MA X R. Interfacial bonding properties of fiber-cement based materials[J]. Road Construction Machinery and Construction Mechanization,2018,35(7):75-78(in Chinese). doi: 10.3969/j.issn.1000-033X.2018.07.009
    [5] 李大伟. 高温后钢纤维与砂浆黏结性能试验研究[D]. 郑州大学, 2020.

    LI D W. Experimental Research on Bonding Properties of Steel Fiber and Mortar after High Temperature[D]. Zhengzhou University, 2020(in Chinese).
    [6] 冯璐. 磷酸镁水泥砂浆与钢纤维黏结性能试验研究[D]. 郑州大学, 2018.

    FENG L. Experimental study on bonding properties of magnesium phosphate ceme -nt mortar and steel fiber [D]. Zheng zhou University, 2018(in Chinese).
    [7] 尚秀琳. 纤维增强水泥混凝土中纤维-基体界面区研究综述[J]. 建筑工程技术与设计, 2017(18):3384-3384.

    SHANG X L. A review of research on fiber-matrix interface zone in fiber-reinforced cement concrete[J]. Construction Engineering Technology and Design,2017(18):3384-3384(in Chinese).
    [8] 陈亚迪, 洪丽, 蒋津, 等. 水泥砂浆基体中玄武岩纤维的拔出试验研究[J]. 硅酸盐通报, 2019, 38(9): 2985-2991.

    CHEN Y D, HONG L, JIANG J, et al. Pull-out Test Study of Basalt Fiber in Cement Mortar Matrix[J]. Silicate Bulletin: 2019, 38(09): 2985-2991. (in Chinese).
    [9] 程俊, 刘加平, 张丽辉. 超高性能混凝土纤维—基体黏结性能测试与机理分析[J]. 混凝土与水泥制品, 2016, (4)(5): 62-66.

    CHENG J, LIU J P, ZHANG L H. Testing and mechanism analysis of fiber-matrix bonding performance of ultra-high performance concrete[J]. Concrete and Cement Products, 2016, (4)(5): 62-66(in Chinese).
    [10] 王照耀, 毕继红, 赵云, 等. 水泥基材料中倾斜端钩型钢纤维拔出力学性能计算模型[J/OL]. 复合材料学报: 1-12[2021-11-15].

    WANG Z Y, BI J H, ZHAO Y, et al. Calculation model of mechanical properties of sloping end hook-shaped steel fiber pull-out in cement-based materials[J/OL]. Journal of Composite Materials: 1-12[2021-11-15](in Chinese).
    [11] 王力. 钢纤维混凝土基体界面黏结性能数值分析[J]. 水利与建筑工程学报, 2019, 17(2):56-60. doi: 10.3969/j.issn.1672-1144.2019.02.010

    WANG L. Numerical analysis of bonding properties of steel fiber-concrete matrix interface[J]. Chinese Journal of Hydraulic and Architectural Engineering,2019,17(2):56-60(in Chinese). doi: 10.3969/j.issn.1672-1144.2019.02.010
    [12] 赵燕茹, 邢永明, 黄建永, 等. 数字图像相关方法在纤维混凝土拉拔试验中的应用[J]. 工程力学, 2010, 27(6):169-175.

    ZHAO Y R, XING Y M, HUANG J Y, et al. Application of digital image correlation method in fiber reinforced concrete pull-out test[J]. Engineering Mechanics,2010,27(6):169-175(in Chinese).
    [13] Chindaprasirt. P, Sukontasukkul. P, Techap hatthanakon A, et al. Effect of graphene oxide on single fiber pullout behavior[J]. Construction and Building Materials,2021,280:122539. doi: 10.1016/j.conbuildmat.2021.122539
    [14] 何锐, 李永鹏, 任思润, 等. 聚丙烯酰胺对粗合成纤维/水泥基体界面性能的影响[J]. 华南理工大学学报(自然科学版), 2015, 43(2):133-138.

    HE R, LI Y P, REN S R, et al. Effect of polyacrylamide on the interface properties of crude synthetic fiber/cement matrix[J]. Journal of South China University of Technology (Natural Science Edition),2015,43(2):133-138(in Chinese).
    [15] 李建辉, 邓宗才, 张建军, 等. 合成纤维与混凝土界面黏结性能研究与发展[J]. 混凝土, 2005(3):31-34. doi: 10.3969/j.issn.1002-3550.2005.03.008

    LI J H, DENG Z C, ZHANG J J, et al. Research and development of the interface bond between synthetic fibers and concrete[J]. Concrete,2005(3):31-34(in Chinese). doi: 10.3969/j.issn.1002-3550.2005.03.008
    [16] 殷石, 陈发兵, 闵锐. 高强度改性合成粗纤维在国际工程中的应用案例[J]. 混凝土与水泥制品, 2018(6):51-55. doi: 10.3969/j.issn.1000-4637.2018.06.012

    YIN S, CHEN F B, MIN R. Application case of high-strength modified synthetic crude fiber in international engineering[J]. Concrete and Cement Products,2018(6):51-55(in Chinese). doi: 10.3969/j.issn.1000-4637.2018.06.012
    [17] 中国工程建设协会标准. 纤维混凝土试验方法标准(CECS13: 2009)[S]. 北京: 中国计划出版社, 2009.

    Standard of China Engineering Construction Association. Standard of fiber concrete test method (CECS13: 2009) [S]. Beijing: China Planning Press, 2009(in Chinese).
    [18] 张献民, 陈雪芳, 李长辉, 等. 纤维与水泥砂浆界面黏结性能研究[J/OL]. 硅酸盐通报: 1-15

    2021-12-17]. ZHANG X M, CHEN X F, LI C H, et al. Research on the bonding properties of fiber and cement mortar interface[J/OL]. Silicate Bulletin: 1-15 [2021-12-17](in Chinese).
    [19] 霍海峰, 刘汉磊, 杨雅静, 等. ECC单轴拉伸疲劳变形特性及寿命预测[J/OL]. 复合材料学报: 1-12[2022-04-18]. DO I: 10.13801/j. cnki. fhclxb. 20210729.002.

    HUO H F, LIU H L, YANG Y J, et al. ECC Uniaxial Tensile Fatigue Deformation Characteristics and Life Prediction [J/OL]. Journal of Composite Materials: 1-12[2022-04-18](in Chinese).
    [20] HUANG L, YUAN M, WEI B D, et al. Experimental investigation on sing fiber pullout behaviour on steel fiber-matrix of reactive powder concrete (RPC)[J]. Construction and Building Materials: 318 (2022) 125899.
    [21] 牛恒茂, 武文红, 赵燕茹, 等. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6):995-999+1009. doi: 10.11896/j.issn.1005-023X.2018.06.026

    NIU H M, WU W H, ZHAO Y R, et al. Analysis of flexural properties of cement-based materials based on PVA fiber-matrix interface properties[J]. Materials Review,2018,32(6):995-999+1009(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.06.026
    [22] 邓明科, 成媛, 翁世强, 等. 高温后高延性混凝土的抗压性能及微观结构[J]. 复合材料学报, 2020, 37(4):985-996.

    DENG M K, CHENG Y, WENG S Q, et al. Compressive properties and microstructure of high ductility concrete after high temperature[J]. Journal of Composite Materials,2020,37(4):985-996(in Chinese).
    [23] 赵楠, 卿龙邦, 杨卓凡, 等. 不同龄期钢纤维增强水泥砂浆纤维拉拔试验与模拟研究[J]. 硅酸盐通报, 2021, 40(7):2165-2173.

    ZHAO N, QING L B, YANG Z F, et al. Study on fiber pulling test and simulation of steel fiber reinforced cement mortar at different ages[J]. Silicate Bulletin,2021,40(7):2165-2173(in Chinese).
    [24] 刘韡, 郭银波. 基于ABAQUS对钢纤维混凝土界面强度分析[J]. 公路交通科技, 2021, 38(5):65-72. doi: 10.3969/j.issn.1002-0268.2021.05.008

    LIU W, GUO Y B. Analysis of the interface strength of steel fiber reinforced concrete based on ABAQUS[J]. Highway Transportation Science and Technology,2021,38(5):65-72(in Chinese). doi: 10.3969/j.issn.1002-0268.2021.05.008
    [25] 李凡凡. 单纤维与水泥土基体拉拔模拟与破坏机理研究[D]. 浙江海洋大学, 2017.

    LI F F. Drawing simulation and failure mechanism of single fiber and cement-soil matrix[D]. Zhejiang Ocean University, 2017(in Chinese).
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 录用日期:  2022-06-11
  • 修回日期:  2022-05-30
  • 网络出版日期:  2022-06-29

目录

    /

    返回文章
    返回