Preparation and properties studies of shield powder/rubber flame retardant composite material
-
摘要:
橡胶复合材料在制备过程中,由于添加炭黑、硫磺等物质,因此往往需要添加一定量的阻燃剂,提高橡胶复合材料的阻燃性能。而钢渣中的铁、硅、镁、铝等金属氧化物是良好的阻燃-消烟剂,将钢渣应用于橡胶中,在减少昂贵阻燃剂用量、提高阻燃性能的同时,也实现冶金大宗固废-钢渣新途径应用,为碳中和与碳达峰贡献微薄力量。本文通过功能助剂对钢渣进行化学改性,得到800目的钢渣粉(盾粉),并将盾粉应用橡胶中替代氢氧化铝,制备出盾粉/橡胶阻燃复合材料。从 图1 可以看出,与未替代氢氧化铝(ZL0)相比,ZL1~ZL3的最大烟密度(MSD)与烟密度等级(SDR)均下降;从图2 中可以看出,与ZL0相比,ZL1~ZL3的残余率高于ZL0;从表1 中可以看出,ZL1~ZL3的水平燃烧与垂直燃烧的燃烧时间均大幅缩短,ZL2、ZL3在水平燃烧时出现自熄现象,导致燃烧速度无法测量,同时氧指数均提高2%。这是因为在燃烧过程中,利用盾粉本身含有Al2O3、MgO、SiO2、Fe2O3等物质间形成了具有协同增效作用的阻燃-消烟体系,在橡胶复合材料内部形成一个可以阻挡橡胶内部因高温分解产生的可燃性气体向外挥发,以及阻挡热量和火焰向材料内部传递的致密炭层,在一定程度上减缓盾粉/橡胶阻燃复合材料剧烈燃烧反应的发生。盾粉/橡胶阻燃复合材料烟密度测试结果 橡胶阻燃复合材料的TG测试结果 盾粉/橡胶阻燃复合材料燃烧性能测试结果 Sample Horizontal burning Vertical burning 氧指数 Burning time/s Burning speed(mm/min) Burning grade Burning time/s Phenomenon Burning grade Oxygen-index(%) Materialgrade ZL0 30 40 HB 18.4 Drip burning V-2 22 Slow-burning ZL1 13 27 HB 16.3 Drip burning V-2 24 Slow-burning ZL2 9 0 HB 14.4 Drip burning V-2 24 Slow-burning ZL3 4 0 HB 13.6 Drip burning V-2 24 Slow-burning Abstract: The functional material (called shield powder) was formed by mixing functional additives with ordinary carbon steel slag under the work of ultra-fine vertical mill, and replaced the flame retardant filler aluminum hydroxide to form shield powder/rubber composite material. In order to reveal the flame retardant mechanism of shield powder in the rubber system, the paper tested vulcanization properties, mechanical properties and combustion properties and analyzed the gas phase and solid phase residues in the combustion process of shield powder/rubber composite material. The results show that, the shield powder prepared from steel slag could promote the vulcanization process of rubber system, shorten vulcanization time and increase vulcanization rate index. What is more, it can replace aluminum hydroxide as flame retardant filler of rubber system and has little effect on mechanical properties. Besides in the combustion process of shield powder/rubber flame retardant composite material, there are Al2O3, MgO, SiO2, Fe2O3 and other substances in shield powder to form a synergistic flame retardant-smoke extinguishing system. Furthermore, the main mineral composition of carbon slag of shield powder/rubber flame retardant composite material is ZnS and FeS2 and is closely related to the proportion of shield powder replacing alumina hydroxide. With the increase of substitution ratio, there are SiO2 and MnP newly in carbon slag.-
Key words:
- shield powder /
- aluminum hydroxide /
- rubber /
- carbon slag /
- flame retardant performance
-
1 盾粉/橡胶阻燃复合材料燃烧性能测试结果
Sample Horizontal burning Vertical burning 氧指数 Burning time/s Burning speed(mm/min) Burning grade Burning time/s Phenomenon Burning grade Oxygen-index(%) Materialgrade ZL0 30 40 HB 18.4 Drip burning V-2 22 Slow-burning ZL1 13 27 HB 16.3 Drip burning V-2 24 Slow-burning ZL2 9 0 HB 14.4 Drip burning V-2 24 Slow-burning ZL3 4 0 HB 13.6 Drip burning V-2 24 Slow-burning 表 1 盾粉的化学成分与粒径分布
Table 1. Chemical composition and particle size distribution of shield powder
Sample Chemical compositions/wt% Particle size/µm CaO P2O5 SiO2 Al2O3 MgO Fe2O3 MnO SO3 Others d90 d50 d10 Shield powder 38.97 2.06 19.31 4.03 4.21 24.95 3.45 0.86 2.16 10.04 3.80 1.13 表 2 盾粉/橡胶阻燃复合材料原料配比/g
Table 2. Ratio of shield powder / rubber flame retardant composite material/g
Raw material RF SP/RF-1 SP/RF-2 SP/RF-3 SP/RF-4 Milled rubber 100 100 100 100 100 Styrene butadiene rubber(SBR·150) 42.64 42.64 42.64 42.64 42.64 Butadiene rubber(BR·900) 78.35 78.35 78.35 78.35 78.35 Carbon black(N220) 121.64 121.64 121.64 121.64 121.64 Shield powder(800 mesh) 0 5.54 11.09 16.53 22.07 Aluminum hydroxide 22.07 16.53 10.98 5.54 0 70 Chlorinated paraffins 44.24 44.24 44.24 44.24 44.24 Zinc oxide 8.85 8.85 8.85 8.85 8.85 Stearic acid 2.24 2.24 2.24 2.24 2.24 Antideteriorant(4010) 2.24 2.24 2.24 2.24 2.24 Antideteriorant(RD) 3.30 3.30 3.30 3.30 3.30 Antimony oxide 6.61 6.61 6.61 6.61 6.61 Protective wax(L-5866) 4.37 4.37 4.37 4.37 4.37 Sulphur 4.37 4.37 4.37 4.37 4.37 Accelerator(TT) 6.40 6.40 6.40 6.40 6.40 Accelerator(CZ) 2.45 2.45 2.45 2.45 2.45 表 3 盾粉/橡胶阻燃复合材料燃烧性能测试结果
Table 3. Combustion performance results of shield powder / rubber flame retardant composite material
Sample Horizontal burning Vertical burning Oxygen index Burning
time/sBurning
speed/
(mm·min−1)Burning
gradeBurning
time/sPhenomenon Burning
gradeOxygen index/% Material grade ZL0 30 40 HB 18.4 Drip burning V-2 22 Slow-burning ZL1 13 27 HB 16.3 Drip burning V-2 24 Slow-burning ZL2 9 0 HB 14.4 Drip burning V-2 24 Slow-burning ZL3 4 0 HB 13.6 Drip burning V-2 24 Slow-burning -
[1] 周玉. 硅炭黑/高分子聚合物复合材料的制备及性能研究[D]. 吉林: 吉林大学, 2017.ZHOU Yu. A study about the preparation and performance of silica carbon black/polymer composites [D]. Jilin: Jilin University, 2017(in Chinese). [2] 张浩, 黄新杰, 宗志芳, 等. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6):67-72. doi: 10.11868/j.issn.1001-4381.2016.000979ZHANG Hao, HUANG Xinjie, ZONG Zhifang, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property[J]. Journal of Materials Engineering,2017,45(6):67-72(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000979 [3] 谭珊. 低密度阻燃硅橡胶泡沫的制备与性能研究[D]. 青岛: 青岛科技大学, 2017TAN San. Research on preparation and properties of low density and flame retardant silicone rubber foam [D]. Qingdao: Qingdao University of Science and Technology, 2017(in Chinese). [4] QIAN L X, DING L, LONG H M, et al. The poisoning effect of sintering dust on V2O5 –WO3 /TiO2 catalyst for NOx removal in iron ore sintering flue gas[J]. Ironmaking & Steelmaking,2020(9):1-7. [5] 张浩. 基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料[J]. 材料工程, 2017, 45(8):24-29. doi: 10.11868/j.issn.1001-4381.2016.000382ZHANG Hao. Optimizing preparation of micron SiO2-based phase change and humidity controlling composites with uniform particle size distribution based on RBF neural network[J]. Journal of Materials Engineering,2017,45(8):24-29(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000382 [6] 杨桢, 熊玉竹. 橡胶材料耐磨性能研究进展[J]. 高分子通报, 2020(9):15-30. doi: 10.14028/j.cnki.1003-3726.2020.09.002YANG Zhen, XIONG Yuzhu. Research progress of wear resistance of rubber materials[J]. Polymer Bulletin,2020(9):15-30(in Chinese). doi: 10.14028/j.cnki.1003-3726.2020.09.002 [7] WANG M Y, WANG R, CHEN X F, et al. Effect of non-rubber components on the crosslinking structure and thermo-oxidative degradation of natural rubber[J]. Polymer Degradation and Stability,2022,196:109845. doi: 10.1016/j.polymdegradstab.2022.109845 [8] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1):114-118. doi: 10.11868/j.issn.1001-4381.2016.001100ZHANG Hao. Cu-Ce/Tio2 moisture performance based on photocatalytic performance[J]. Journal of Materials Engineering,2018,46(1):114-118(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001100 [9] REN Z, ZHANG H, HUANG J, et al. Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism[J]. Journal of Alloys and Compounds,2022,910:164814. doi: 10.1016/j.jallcom.2022.164814 [10] 王文博, 张广鑫, 梁西良, 等. 阻燃涂料中阻燃剂的研究进展[J]. 化学与粘合, 2021, 43(4):300-303. doi: 10.3969/j.issn.1001-0017.2021.04.016WANG Wenbo, ZHANG Guangxin, LIANG Xiliang, et al. Research progress in flame retardant in flame retardant coatings[J]. Chemistry and Adhesion,2021,43(4):300-303(in Chinese). doi: 10.3969/j.issn.1001-0017.2021.04.016 [11] ZHANG Hao, FANG Yuan. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures[J]. Journal of Alloys and Compounds,2019,781:201-208. doi: 10.1016/j.jallcom.2018.11.375 [12] 金爱兵, 巨有, 孙浩, 等. 含复合相变材料的充填体力学特性[J]. 中南大学学报(自然科学版), 2021, 52(9):3153-3163.Jin A B, Ju Y, Shun H, et al. Mechanical properties of filling materials containing composite phase change materials[J]. Journal of Central South University (Science and Technology),2021,52(9):3153-3163(in Chinese). [13] 张浩, 张欣雨. 改性多孔钢渣/橡胶复合材料的制备及其性能[J]. 工程科学学报, 2019, 41(01): 88-95.ZHANG Hao, ZHANG Xinyu. Preparation of modified porous steel slag / rubber composite materials and its properties [J] Chinese Journal of Engineering, 2019, 41(01): 88-95(in Chinese). [14] 马佳骏. 一种层状双氢氧化物的制备及其与聚乙烯醇复合薄膜的阻燃性能研究[D]. 兰州: 兰州大学, 2018.MA Jiajun. Preparation of layered double hydroxide and the flame retardancy of its polyvinyl alcohol composite film [D]. Lanzhou: Lanzhou University, 2018(in Chinese). [15] 曹丽萍, 张晓亢, 杨晨, 等. 基于分子动力学的硅烷偶联剂对铁尾矿沥青混合料改性的机理[J]. 中南大学学报(自然科学版), 2021, 52(07): 2276-2286.CAO Liping, ZHANG Xiaokang, YANG Chen, et al. Modification mechanism of iron tailings asphalt mixture by silane coupling agents based on molecular dynamics [J] Journal of Central South University (Science and Technology), 2021, 52(09): 3153-2286(in Chinese). [16] 郑伟成, 赵令, 张浩, 等. 矿渣-硅灰协同强化钢渣水化反应机理[J]. 钢铁, 2022, 57(5):146-155.ZHENG Weicheng, ZHAO Ling, ZHANG Hao, et al. Activation mechanisms of silica fume and blast furnace slag on steel slag hydrated gelling systems[J]. Iron & Steel,2022,57(5):146-155(in Chinese). [17] QIANG L, ZHAO B, WANG H et al. Valorization of the spent catalyst from flue gas denitrogenation by improving bio-oil production from hydrothermal liquefaction of pinewood sawdust. Fuel 2022; 312: 122804 [18] 张彦杰, 徐冬, 王晓晨, 等. 基于激光超声的晶粒尺寸动态检测稳定性研究[J]. 中南大学学报(自然科学版), 2021, 52(5):1427-1435.ZHANG Yanjie, XU dong, WANG Xiaochen, et al. Dynamic detection stability of grain size based on laser ultrasonics[J]. Journal of Central South University (Science and Technology),2021,52(5):1427-1435(in Chinese). [19] 张浩, 李海丽, 高青, 等. 特殊钢钢渣用作橡胶功能填料及其安全性分析[J]. 工程科学学报, 2022, 42(5):628-634.ZHANG Hao, LI Haili, GAO Qing, et al. Safety analysis of specialty-steel slag used as rubber functional filler[J]. Chinese Journal of Engineering,2022,42(5):628-634(in Chinese). [20] ZHANG H. Magnetic properties and thermal stability of SrFe12 O19/gamma-Fe4 N composites with effective magnetic exchange coupling[J]. Ceramics International,2020,46:9972-9977. doi: 10.1016/j.ceramint.2019.12.220 [21] 胡亚飞, 李克庆, 韩斌, 等. 基于响应面法-满意度准则的混合骨料充填体强度发展与优化分析[J]. 中南大学学报(自然科学版), 2022, 53(2):620-630.HU Yafei, LI Keqing, HAN Bin, et al. Strength development and optimization analysis of mixed aggregate backfill based on RSM-DF[J]. Journal of Central South University (Science and Technology),2022,53(2):620-630(in Chinese). [22] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6):1000-1003+1009. doi: 10.11896/j.issn.1005-023X.2018.06.027SHENG Haiyang, WANG Zhengzhou. Surface modification of steel slag and its application in compounded rubber[J]. Materials Reports,2018,32(6):1000-1003+1009(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.06.027 [23] 顾恒星, 李辉. 铁水脱硫渣做填料对橡胶材料力学性能的影响[J]. 硅酸盐通报, 2017, 36(3):1009-1014. doi: 10.16552/j.cnki.issn1001-1625.2017.03.043GU Hengxin, LI Hui. Effect of molten iron desulphurization slag as filler on the mechanical properties of rubber materials[J]. Bulletin of the Chinese Ceramic Society,2017,36(3):1009-1014(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2017.03.043 [24] 龙红明, 郑伟成, 裴元东, 等. 钢渣改性制备高性能化工填料的研究与应用[J]. 钢铁研究学报, 2021, 33(10):1076-1083. doi: 10.13228/j.boyuan.issn1001-0963.20210039LONG Hongming, ZHWNG Weicheng, PEI Yuandong, et al. Research and application of modified steel slag to prepare high-performance chemical fillers[J]. Journal of Iron and Steel Research,2021,33(10):1076-1083(in Chinese). doi: 10.13228/j.boyuan.issn1001-0963.20210039 [25] 李帮平, 龙红明, 刘自民, 等. 钢渣超微粉取代部分炭黑高强耐磨型丁苯橡胶复合材料的制备及其性能研究[J]. 现代化工, 2021, 41(1):149-153. doi: 10.16606/j.cnki.issn0253-4320.2021.01.030LI Bangping, LONG Hongming, LIU Ziming, et al. Preparation of high strength-wear resistant styrene butadiene rubber composite materials with steel slag ultrafine powder replacing partial carbon black and study on their properties[J]. Modern Chemical Industry,2021,41(1):149-153(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2021.01.030 [26] 全国橡胶与橡胶制品标准化技术委员会. 橡胶胶料硫化特性的测定圆盘振荡硫化仪法: GB/T 9869-2014[S]. 北京: 中国标准出版社出版发行, 2014.National Rubber and Rubber Products Standardization Technical Committee. Rubber-measurement of vulcanization characteristics with the oscillating disc curemeter: GB/T 9869-2014[S]. Beijing: Publishing by China Standards Press, 2014(in Chinese). [27] 全国橡胶与橡胶制品标准化技术委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529-2008[S]. 北京: 中国标准出版社出版发行, 2008.National Rubber and Rubber Products Standardization Technical Committee. Rubber, vulcanized or thermoplastic-Determination of tear strength (Trouser, angle, crescent test picces): GB/T 529-2008[S]. Beijing: Publishing by China Standards Press, 2008(in Chinese). [28] 中国石油和化学工业联合会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1-2008[S] 北京: 中华人民共和国国家质量监督检验检疫总局, 2008.China Petroleum and Chemical Industry Association. Rubber, vulcanized or thermoplastic-Determination of indentation hardness-Part 1: Duromerer method(Shore hardness) : GB/T 531.1-2008[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China, 2008(in Chinese). [29] 全国橡胶与橡胶制品标准化技术委员会. 橡胶燃烧性能的测定: GB/T 10707-2008[S]. 北京: 中国标准出版社出版发行, 2008(in Chinese).National Rubber and Rubber Products Standardization Technical Committee. Rubber. Determination of the burning: GB/T 10707-2008[S]. Beijing: Publishing by China Standards Press, 2008(in Chinese). [30] 中国石油和化学工业联合会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408-2008[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2008.Plastics-Determination of burning characteristics -Horizontal and vertical test: GB/T 2408-2008[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China, 2008(in Chinese). [31] 全国消防标准化技术委员会. 建筑材料燃烧或分解的烟密度试验方法: GB/T 8627-2007[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2007.National Fire Standardization Technical Committee. Test method for density of smoke from the burning or decomposition of building material: GB/T 8627-2007[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China, 2007(in Chinese). [32] 宋立, 王鑫, 康瑞兴, 等. BIPB和S的复配顺序对丁腈橡胶硫化特性和力学性能的影响研究[J]. 应用化工, 2020, 49(4):885-887+893. doi: 10.3969/j.issn.1671-3206.2020.04.021SONG Li, WANG Xin, KANG Ruixin, et al. Study on the influence of BIPB and S combination sequence on vulcanization properties and mechanical[J]. Applied Chemical Industry,2020,49(4):885-887+893(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.021 [33] 全国带轮与带标准化技术委员会. 普通用途织物芯输送带: GB/T 7984-2013[S]. 北京: 中国标准出版社出版发行, 2008.National Standardization Technical Committee of Belt and Wheel. Conveyor belts of textile construction for general use: GB/T 7984-2013[S]. Beijing: Publishing by China Standards Press, 2013. [34] YANG Y J, LIU X Y, Tang G, et al. Fire retarded polyurethane foam composites based on steel slag/ammonium polyphosphate system: A novel strategy for utilization of metallurgical solid waste[J]. Polymers for Advanced Technologies,2022,33(1):452-463. doi: 10.1002/pat.5529 [35] 龙红明, 王凯祥, 刘自民, 等. 钢渣超微粉/橡胶复合材料的性能及补强-阻燃机制[J]. 复合材料学报, 2020, 37(4):994-951. doi: 10.13801/j.cnki.fhclxb.20190828.001LONG Hongming, WANG Kaixiang, LIU Zi ming, et al. Properties and reinforcement-flame retardant mechanism of steel slag ultrafine powder/rubber composites[J]. Acta Materiae Compositae Sinica,2020,37(4):994-951(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190828.001 [36] TANG G, LIU X L, YANG Y D, et al. Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams[J]. Advanced Powder Technology,2020,33(4):1420-1430. [37] N. Schmidt, N. Nateghi, C. Lacroix, D. Ménard, R. A. Masut. Manganese phosphide nano-clusters embedded in a polystyrene matrix[J]. Journal of Magnetism and Magnetic Materials, Volume 562,2022:169705. [38] 徐虎, 张泽, 徐卫军. 聚丙烯腈基碳纤维石墨化程度对其电阻率的影响[J]. 化工新型材料, 2021, 49(2):158-160+164. doi: 10.19817/j.cnki.issn1006-3536.2021.02.036XU Hu, ZHANG Zhe, XU Weibin. Effect of Nb Addition on Properties of TiZr-based Amorphous Alloys[J]. New Chemical Materials,2021,49(2):158-160+164(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.02.036 [39] WANG L, Tawiah B, SHI Y, et al. Highly effective flame-retardant rigid polyurethane foams: fabrication and applications in inhibition of coal combustion[J]. Polymers,2019,11(11):1776. doi: 10.3390/polym11111776 [40] YANG H, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies,2015,25(9):1034-1043. -

计量
- 文章访问数: 318
- HTML全文浏览量: 139
- 被引次数: 0