留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盾粉/橡胶阻燃复合材料的制备与性能

赵令 张浩 徐维成 申振伟 李海丽 龙红明

赵令, 张浩, 徐维成, 等. 盾粉/橡胶阻燃复合材料的制备与性能[J]. 复合材料学报, 2023, 40(9): 5085-5094. doi: 10.13801/j.cnki.fhclxb.20221128.002
引用本文: 赵令, 张浩, 徐维成, 等. 盾粉/橡胶阻燃复合材料的制备与性能[J]. 复合材料学报, 2023, 40(9): 5085-5094. doi: 10.13801/j.cnki.fhclxb.20221128.002
ZHAO Ling, ZHANG Hao, XU Weicheng, et al. Preparation and properties studies of shield powder/rubber flame retardant composite material[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5085-5094. doi: 10.13801/j.cnki.fhclxb.20221128.002
Citation: ZHAO Ling, ZHANG Hao, XU Weicheng, et al. Preparation and properties studies of shield powder/rubber flame retardant composite material[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5085-5094. doi: 10.13801/j.cnki.fhclxb.20221128.002

盾粉/橡胶阻燃复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20221128.002
基金项目: 国家自然科学基金(52174290);安徽省高校协同创新项目(GXXT-2020-072);安徽省杰青项目(2208085 J19);中国博士后科学基金(2017 M612051)
详细信息
    通讯作者:

    张浩,博士,副教授,硕士生导师,研究方向为冶金固废无害高附加值非建材领域利用研究 E-mail: fengxu19821018@163.com

  • 中图分类号: TB332

Preparation and properties studies of shield powder/rubber flame retardant composite material

Funds: National Natural Science Foundation of China (52174290); Collaborative Innovation of Universities in Anhui Project (GXXT-2020-072); Anhui Jieqing Project (2208085 J19); Postdoctoral Science Foundation of China (2017 M612051)
  • 摘要: 利用功能助剂与普通碳钢钢渣进行混合,在超细立磨的作用下形成功能材料(简称盾粉),将盾粉替代阻燃填料氢氧化铝制备盾粉/橡胶阻燃复合材料。测试其硫化性能、力学性能与燃烧性能,研究分析盾粉/橡胶阻燃复合材料燃烧过程中气、固相残余物,以揭示盾粉在橡胶体系中的阻燃机制。研究结果表明:以钢渣为原料制备的盾粉,一方面可以促进橡胶体系的硫化过程,缩短硫化时间,提高硫化速率指数;另一方面可以替代氢氧化铝作为橡胶体系的阻燃填料且对力学性能影响极小。盾粉/橡胶阻燃复合材料在燃烧过程中,盾粉所含Al2O3、MgO、SiO2、Fe2O3等形成物质间形成了具有协同增效作用的阻燃-消烟体系。盾粉/橡胶阻燃复合材料炭渣的主要矿物组成与盾粉替代氢氧化铝比例密切相关,即炭渣矿物成分以ZnS、FeS2为主,随着替代比例的增加,矿物成分新增SiO2与MnP。

     

  • 图  1  盾粉生产工艺图

    Figure  1.  Production and technology process of shield powder

    图  2  SP/RF阻燃复合材料硫化测试结果

    Figure  2.  Vulcanization results of SP/RF retardant composite material

    ML—Minimum torque; MH—Maximum torque; tS1—Scorch time; tC90—Positive curing time; CRI—Vulcanization rate index

    图  3  SP/RF阻燃复合材料力学性能测试结果

    Figure  3.  Mechanical properties results of SP/RF flame retardant composite material

    图  4  SP/RF阻燃复合材料烟密度测试结果

    Figure  4.  Smoke density results of SP/RF retardant composite material

    图  5  SP/RF阻燃复合材料的TG曲线

    Figure  5.  TG curves of SP/RF retardant composite material

    图  6  SP/RF胶阻燃复合材料炭渣的XRD图谱

    Figure  6.  XRD patterns of SP/RF retardant composite material carbon slag

    图  7  SP/RF阻燃复合材料炭渣的拉曼图谱与SEM图像

    Figure  7.  Raman spectra and SEM images of SP/RF retardant composite material carbon slag

    ID/IG—Ratio of the area of peak D to peak G

    图  8  SP/RF阻燃复合材料硫化-阻燃机制

    Figure  8.  Vulcanization-flame retardant mechanism of SP/RF retardant composite material

    表  1  盾粉/橡胶阻燃复合材料燃烧性能测试结果

    SampleHorizontal burningVertical burning氧指数
    Burning time/sBurning speed(mm/min)Burning gradeBurning time/sPhenomenonBurning gradeOxygen-index(%)Materialgrade
    ZL03040HB18.4Drip burningV-222Slow-burning
    ZL11327HB16.3Drip burningV-224Slow-burning
    ZL290HB14.4Drip burningV-224Slow-burning
    ZL340HB13.6Drip burningV-224Slow-burning
    下载: 导出CSV

    表  1  盾粉的化学成分与粒径分布

    Table  1.   Chemical composition and particle size distribution of shield powder

    SampleChemical composition/wt%Particle diameter/µm
    CaOP2O5SiO2Al2O3MgOFe2O3MnOSO3Others905010
    Shield powder38.972.0619.314.034.2124.953.450.862.1610.043.801.13
    下载: 导出CSV

    表  2  盾粉(SP)/橡胶(RF)阻燃复合材料原料配比

    Table  2.   Ratio of shield powder (SP)/rubber flame (RF) retardant composite material g

    Raw materialRFSP/RF-1SP/RF-2SP/RF-3SP/RF-4
    Milled rubber 100 100 100 100 100
    Styrene butadiene rubber (SBR·150) 42.64 42.64 42.64 42.64 42.64
    Butadiene rubber (BR·900) 78.35 78.35 78.35 78.35 78.35
    Carbon black (N220) 121.64 121.64 121.64 121.64 121.64
    Shield powder (800 mesh) 0 5.54 11.09 16.53 22.07
    Aluminum hydroxide 22.07 16.53 10.98 5.54 0
    70 Chlorinated paraffins 44.24 44.24 44.24 44.24 44.24
    Zinc oxide 8.85 8.85 8.85 8.85 8.85
    Stearic acid 2.24 2.24 2.24 2.24 2.24
    Antideteriorant (4010) 2.24 2.24 2.24 2.24 2.24
    Antideteriorant (RD) 3.30 3.30 3.30 3.30 3.30
    Antimony oxide 6.61 6.61 6.61 6.61 6.61
    Protective wax (L-5866) 4.37 4.37 4.37 4.37 4.37
    Sulphur 4.37 4.37 4.37 4.37 4.37
    Accelerator (TT) 6.40 6.40 6.40 6.40 6.40
    Accelerator (CZ) 2.45 2.45 2.45 2.45 2.45
    下载: 导出CSV

    表  3  SP/RF阻燃复合材料燃烧性能测试结果

    Table  3.   Combustion performance results of SP/RF retardant composite material

    SampleHorizontal burningVertical burningOxygen index
    Burning
    time/s
    Burning
    speed/
    (mm·min−1)
    Burning
    grade
    Burning
    time/s
    PhenomenonBurning
    grade
    Oxygen index/%Material grade
    ZL03040HB18.4Drip burningV-222Slow-burning
    ZL11327HB16.3Drip burningV-224Slow-burning
    ZL2 9 0HB14.4Drip burningV-224Slow-burning
    ZL3 4 0HB13.6Drip burningV-224Slow-burning
    下载: 导出CSV
  • [1] 周玉. 硅炭黑/高分子聚合物复合材料的制备及性能研究[D]. 长春: 吉林大学, 2017.

    ZHOU Yu. A study about the preparation and performance of silica carbon black/polymer composites[D]. Changchun: Jilin University, 2017(in Chinese).
    [2] 张浩, 黄新杰, 宗志芳, 等. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6):67-72. doi: 10.11868/j.issn.1001-4381.2016.000979

    ZHANG Hao, HUANG Xinjie, ZONG Zhifang, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property[J]. Journal of Materials Engineering,2017,45(6):67-72(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000979
    [3] 谭珊. 低密度阻燃硅橡胶泡沫的制备与性能研究[D]. 青岛: 青岛科技大学, 2017

    TAN Shan. Research on preparation and properties of low density and flame retardant silicone rubber foam[D]. Qingdao: Qingdao University of Science and Technology, 2017(in Chinese).
    [4] QIAN L X, DING L, LONG H M, et al. The poisoning effect of sintering dust on V2O5-WO3/TiO2 catalyst for NOx removal in iron ore sintering flue gas[J]. Ironmaking & Steelmaking,2021,48(5):527-533.
    [5] 张浩. 基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料[J]. 材料工程, 2017, 45(8):24-29. doi: 10.11868/j.issn.1001-4381.2016.000382

    ZHANG Hao. Optimizing preparation of micron SiO2-based phase change and humidity controlling composites with uniform particle size distribution based on RBF neural network[J]. Journal of Materials Engineering,2017,45(8):24-29(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.000382
    [6] 杨桢, 熊玉竹. 橡胶材料耐磨性能研究进展[J]. 高分子通报, 2020(9):15-30. doi: 10.14028/j.cnki.1003-3726.2020.09.002

    YANG Zhen, XIONG Yuzhu. Research progress of wear re-sistance of rubber materials[J]. Polymer Bulletin,2020(9):15-30(in Chinese). doi: 10.14028/j.cnki.1003-3726.2020.09.002
    [7] WANG M Y, WANG R, CHEN X F, et al. Effect of non-rubber components on the crosslinking structure and thermo-oxidative degradation of natural rubber[J]. Polymer Degradation and Stability,2022,196:109845. doi: 10.1016/j.polymdegradstab.2022.109845
    [8] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1):114-118. doi: 10.11868/j.issn.1001-4381.2016.001100

    ZHANG Hao. Cu-Ce/TiO2 moisture performance based on photocatalytic performance[J]. Journal of Materials Engi-neering,2018,46(1):114-118(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001100
    [9] REN Z, ZHANG H, HUANG J, et al. Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism[J]. Journal of Alloys and Compounds,2022,910:164814. doi: 10.1016/j.jallcom.2022.164814
    [10] 王文博, 张广鑫, 梁西良, 等. 阻燃涂料中阻燃剂的研究进展[J]. 化学与粘合, 2021, 43(4):300-303. doi: 10.3969/j.issn.1001-0017.2021.04.016

    WANG Wenbo, ZHANG Guangxin, LIANG Xiliang, et al. Research progress in flame retardant in flame retardant coatings[J]. Chemistry and Adhesion,2021,43(4):300-303(in Chinese). doi: 10.3969/j.issn.1001-0017.2021.04.016
    [11] ZHANG H, FANG Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures[J]. Journal of Alloys and Compounds,2019,781:201-208. doi: 10.1016/j.jallcom.2018.11.375
    [12] 金爱兵, 巨有, 孙浩, 等. 含复合相变材料的充填体力学特性[J]. 中南大学学报(自然科学版), 2021, 52(9):3153-3163.

    JIN Aibing, JU You, SUN Hao, et al. Mechanical properties of filling materials containing composite phase change materials[J]. Journal of Central South University (Science and Technology),2021,52(9):3153-3163(in Chinese).
    [13] 张浩, 张欣雨. 改性多孔钢渣/橡胶复合材料的制备及其性能[J]. 工程科学学报, 2019, 41(1): 88-95.

    ZHANG Hao, ZHANG Xinyu. Preparation of modified porous steel slag/rubber composite materials and its properties[J]. Chinese Journal of Engineering, 2019, 41(1): 88-95(in Chinese).
    [14] 马佳骏. 一种层状双氢氧化物的制备及其与聚乙烯醇复合薄膜的阻燃性能研究[D]. 兰州: 兰州大学, 2018.

    MA Jiajun. Preparation of layered double hydroxide and the flame retardancy of its polyvinyl alcohol composite film[D]. Lanzhou: Lanzhou University, 2018(in Chinese).
    [15] 曹丽萍, 张晓亢, 杨晨, 等. 基于分子动力学的硅烷偶联剂对铁尾矿沥青混合料改性的机理[J]. 中南大学学报(自然科学版), 2021, 52(7): 2276-2286.

    CAO Liping, ZHANG Xiaokang, YANG Chen, et al. Modification mechanism of iron tailings asphalt mixture by silane coupling agents based on molecular dynamics[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2276-2286(in Chinese).
    [16] 郑伟成, 赵令, 张浩, 等. 矿渣-硅灰协同强化钢渣水化反应机理[J]. 钢铁, 2022, 57(5):146-155. doi: 10.13228/j.boyuan.issn0449-749x.20210790

    ZHENG Weicheng, ZHAO Ling, ZHANG Hao, et al. Activation mechanisms of silica fume and blast furnace slag on steel slag hydrated gelling systems[J]. Iron & Steel,2022,57(5):146-155(in Chinese). doi: 10.13228/j.boyuan.issn0449-749x.20210790
    [17] QIAN L X, ZHAO B J, WANG H Y, et al. Valorization of the spent catalyst from flue gas denitrogenation by improving bio-oil production from hydrothermal liquefaction of pinewood sawdust[J]. Fuel, 2022, 312: 122804.
    [18] 张彦杰, 徐冬, 王晓晨, 等. 基于激光超声的晶粒尺寸动态检测稳定性研究[J]. 中南大学学报(自然科学版), 2021, 52(5):1427-1435.

    ZHANG Yanjie, XU dong, WANG Xiaochen, et al. Dynamic detection stability of grain size based on laser ultrasonics[J]. Journal of Central South University (Science and Technology),2021,52(5):1427-1435(in Chinese).
    [19] 张浩, 李海丽, 高青, 等. 特殊钢钢渣用作橡胶功能填料及其安全性分析[J]. 工程科学学报, 2022, 42(5):628-634.

    ZHANG Hao, LI Haili, GAO Qing, et al. Safety analysis of specialty-steel slag used as rubber functional filler[J]. Chinese Journal of Engineering,2022,42(5):628-634(in Chinese).
    [20] ZHANG H. Magnetic properties and thermal stability of SrFe12O19/γ-Fe4N composites with effective magnetic exchange coupling[J]. Ceramics International,2020,46(7):9972-9977. doi: 10.1016/j.ceramint.2019.12.220
    [21] 胡亚飞, 李克庆, 韩斌, 等. 基于响应面法-满意度准则的混合骨料充填体强度发展与优化分析[J]. 中南大学学报(自然科学版), 2022, 53(2):620-630.

    HU Yafei, LI Keqing, HAN Bin, et al. Strength development and optimization analysis of mixed aggregate backfill based on RSM-DF[J]. Journal of Central South University (Science and Technology),2022,53(2):620-630(in Chinese).
    [22] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6):1000-1003, 1019. doi: 10.11896/j.issn.1005-023X.2018.06.027

    SHENG Haiyang, WANG Zhengzhou. Surface modification of steel slag and its application in compounded rubber[J]. Materials Reports,2018,32(6):1000-1003, 1019(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.06.027
    [23] 顾恒星, 李辉. 铁水脱硫渣做填料对橡胶材料力学性能的影响[J]. 硅酸盐通报, 2017, 36(3):1009-1014. doi: 10.16552/j.cnki.issn1001-1625.2017.03.043

    GU Hengxin, LI Hui. Effect of molten iron desulphurization slag as filler on the mechanical properties of rubber materials[J]. Bulletin of the Chinese Ceramic Society,2017,36(3):1009-1014(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2017.03.043
    [24] 龙红明, 郑伟成, 裴元东, 等. 钢渣改性制备高性能化工填料的研究与应用[J]. 钢铁研究学报, 2021, 33(10):1076-1083. doi: 10.13228/j.boyuan.issn1001-0963.20210039

    LONG Hongming, ZHENG Weicheng, PEI Yuandong, et al. Research and application of modified steel slag to prepare high-performance chemical fillers[J]. Journal of Iron and Steel Research,2021,33(10):1076-1083(in Chinese). doi: 10.13228/j.boyuan.issn1001-0963.20210039
    [25] 李帮平, 龙红明, 刘自民, 等. 钢渣超微粉取代部分炭黑高强耐磨型丁苯橡胶复合材料的制备及其性能研究[J]. 现代化工, 2021, 41(1):149-153. doi: 10.16606/j.cnki.issn0253-4320.2021.01.030

    LI Bangping, LONG Hongming, LIU Ziming, et al. Preparation of high strength-wear resistant styrene butadiene rubber composite materials with steel slag ultrafine powder replacing partial carbon black and study on their properties[J]. Modern Chemical Industry,2021,41(1):149-153(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2021.01.030
    [26] 全国橡胶与橡胶制品标准化技术委员会. 橡胶胶料硫化特性的测定圆盘振荡硫化仪法: GB/T 9869—2014[S]. 北京: 中国标准出版社, 2014.

    National Rubber and Rubber Products Standardization Technical Committee. Rubber-measurement of vulcanization characteristics with the oscillating disc curemeter: GB/T 9869—2014[S]. Beijing: Standards Press of China, 2014(in Chinese).
    [27] 全国橡胶与橡胶制品标准化技术委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    National Rubber and Rubber Products Standardization Technical Committee. Rubber, vulcanized or thermoplastic-Determination of tear strength (Trouser, angle, crescent test picces): GB/T 529—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [28] 中国石油和化学工业联合会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1—2008[S] 北京: 中国标准出版社, 2008.

    China Petroleum and Chemical Industry Association. Rubber, vulcanized or thermoplastic-Determination of indentation hardness-Part 1: Duromerer method(Shore hardness) : GB/T 531.1—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [29] 全国橡胶与橡胶制品标准化技术委员会. 橡胶燃烧性能的测定: GB/T 10707—2008[S]. 北京: 中国标准出版社, 2008(in Chinese).

    National Rubber and Rubber Products Standardization Technical Committee. Rubber. Determination of the burning: GB/T 10707—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [30] 中国石油和化学工业联合会. 塑料燃烧性能的测定水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2008.

    China Petroleum and Chemical Industry Federation. Plastics-Determination of burning characteristics-Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [31] 全国消防标准化技术委员会. 建筑材料燃烧或分解的烟密度试验方法: GB/T 8627—2007[S]. 北京: 中国标准出版社, 2007.

    National Fire Standardization Technical Committee. Test method for density of smoke from the burning or decomposition of building material: GB/T 8627—2007[S]. Beijing: Standards Press of China, 2007(in Chinese).
    [32] 宋立, 王鑫, 康瑞兴, 等. BIPB和S的复配顺序对丁腈橡胶硫化特性和力学性能的影响研究[J]. 应用化工, 2020, 49(4):885-887, 893. doi: 10.3969/j.issn.1671-3206.2020.04.021

    SONG Li, WANG Xin, KANG Ruixin, et al. Study on the influence of BIPB and S combination sequence on vulcanization properties and mechanical properties of NBR[J]. Applied Chemical Industry,2020,49(4):885-887, 893(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.04.021
    [33] 全国带轮与带标准化技术委员会. 普通用途织物芯输送带: GB/T 7984—2013[S]. 北京: 中国标准出版社, 2008.

    National Standardization Technical Committee of Belt and Wheel. Conveyor belts of textile construction for general use: GB/T 7984—2013[S]. Beijing: Standards Press of China, 2013.
    [34] YANG S J, LIU X Y, TANG G, et al. Fire retarded polyurethane foam composites based on steel slag/ammonium polyphosphate system: A novel strategy for utilization of metallurgical solid waste[J]. Polymers for Advanced Technologies,2022,33(1):452-463. doi: 10.1002/pat.5529
    [35] 龙红明, 王凯祥, 刘自民, 等. 钢渣超微粉/橡胶复合材料的性能及补强-阻燃机制[J]. 复合材料学报, 2020, 37(4):994-951. doi: 10.13801/j.cnki.fhclxb.20190828.001

    LONG Hongming, WANG Kaixiang, LIU Zimin, et al. Pro-perties and reinforcement-flame retardant mechanism of steel slag ultrafine powder/rubber composites[J]. Acta Materiae Compositae Sinica,2020,37(4):994-951(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190828.001
    [36] TANG G, LIU X L, YANG Y D, et al. Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams[J]. Advanced Powder Technology,2020,31(4):1420-1430.
    [37] SCHMIDT N, NATEGHI N, LACROIX C, et al. Manganese phosphide nano-clusters embedded in a polystyrene matrix[J]. Journal of Magnetism and Magnetic Materials,2022,562:169705.
    [38] 徐虎, 张泽, 徐卫军. 聚丙烯腈基碳纤维石墨化程度对其电阻率的影响[J]. 化工新型材料, 2021, 49(2):158-160, 164. doi: 10.19817/j.cnki.issn1006-3536.2021.02.036

    XU Hu, ZHANG Ze, XU Weijun. Influence of graphitization degree of PAN based CF on its resistivity [J]. New Chemical Materials,2021,49(2):158-160, 164(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.02.036
    [39] WANG L C, TAWIAH B, SHI Y Q, et al. Highly effective flame-retardant rigid polyurethane foams: Fabrication and applications in inhibition of coal combustion[J]. Polymers,2019,11(11):1776. doi: 10.3390/polym11111776
    [40] YANG H Y, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies,2014,25(9):1034-1043.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  402
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2022-11-02
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回