留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能

刘奋军 宁祥 白艳霞 申志康 陈海燕

刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2023, 40(2): 959-969. doi: 10.13801/j.cnki.fhclxb.20220410.002
引用本文: 刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2023, 40(2): 959-969. doi: 10.13801/j.cnki.fhclxb.20220410.002
LIU Fenjun, NING Xiang, BAI Yanxia, et al. Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 959-969. doi: 10.13801/j.cnki.fhclxb.20220410.002
Citation: LIU Fenjun, NING Xiang, BAI Yanxia, et al. Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 959-969. doi: 10.13801/j.cnki.fhclxb.20220410.002

AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能

doi: 10.13801/j.cnki.fhclxb.20220410.002
基金项目: 国家自然科学基金(51861034;51974260);榆林市科技局产学研项目(CXY-2022-083;CXY-2020-006-01);榆林高新区科技创新局产学研项目(CXY-2021-16);榆林学院高层次人才项目(20 GK06);中国科学院洁净能源创新研究院-榆林学院联合基金项目(YLU-DNL Fund 2021008);陕西省教育厅创新团队项目(22JP105)
详细信息
    通讯作者:

    陈海燕,博士,副教授,博士生导师,研究方向为激光复合钎焊的超精密连接及复合材料制备等 E-mail:hychen@nwpu.edu.cn

  • 中图分类号: TB331

Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy

Funds: National Natural Science Foundation of China (51861034; 51974260); Technology Bureau of Yulin (CXY-2022-083; CXY-2020-006-01); Technology Bureau of Yulin High-tech Zone (CXY-2021-16); High-level Talent Project of Yulin University (20 GK06); Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021008); Innovation Team of Education Department of Shaanxi Provincial Government (22JP105)
  • 摘要: 为有效改善AZ31镁合金表面的腐蚀性能,本文采用激光熔覆技术在AZ31镁合金表面成功制备了无缺陷的Al-TiC复合涂层。研究了不同成分含量的Al-TiC复合涂层的相组成、微观组织和耐腐蚀性能的影响。结果表明:在Al-TiC复合涂层内形成了大量的Al12Mg17、Mg2Al3和TiC相。复合涂层内微观组织呈现出连续网络状分布特征。随着Al-TiC混合粉末中Al含量的减小,复合涂层中Al12Mg17、Mg2Al3和TiC相的含量呈递增趋势,网络状分布的微观组织结构变得更加均匀连续。复合涂层与AZ31基体之间形成了良好的冶金结合界面。激光熔覆制备的Al-TiC复合涂层耐腐蚀性能较AZ31基体显著提升。自腐蚀电位由基体的−1.563 V提升至−1.144 V,自腐蚀电流由基体的1.55×10−4 A减小至2.63×10−6 A。

     

  • 图  1  Al粉和TiC粉的SEM图像

    Figure  1.  SEM images of Al and TiC

    图  2  AZ31和Al-TiC复合涂层XRD图谱

    Figure  2.  XRD patterns of AZ31 and Al-TiC composite coatings

    图  3  Al-TiC复合涂层表面 ((a)~(c)) 及横截面 ((d)~(f)) 宏观成型

    Figure  3.  Surface ((a)-(c)) and cross-sectional ((d)-(f)) morphologies of Al-TiC composite coatings

    图  4  Al-TiC复合涂层结合界面 ((a)~(c)) 及微观组织 ((d)~(f))

    A, B—Test point

    Figure  4.  Bonding interface ((a)-(c)) and microstructure ((d)-(f)) of Al-TiC composite coatings

    图  5  Al-TiC复合涂层微观组织

    Figure  5.  Microstructures of the Al-TiC composite coatings

    图  6  Al-TiC复合涂层(Al-5TiC)元素分布

    Figure  6.  Elemental mappings of Al-TiC composite coatings (Al-5TiC)

    图  8  Al-TiC复合涂层(Al-20TiC)元素分布

    Figure  8.  Elemental mappings of Al-TiC composite coatings (Al-20TiC)

    图  7  Al-TiC复合涂层(Al-10TiC)元素分布

    Figure  7.  Elemental mappings of Al-TiC composite coatings (Al-10TiC)

    图  9  AZ31和Al-TiC复合涂层耐腐蚀性能

    Figure  9.  Corrosion resistance of AZ31 and Al-TiC composite coatings

    图  10  AZ31和Al-TiC复合涂层的EIS等效电路图

    Rs—Solution resistance; CPEf—Al-TiC composite coating capacitance; Rf—Al-TiC composite coating resistance; CPEdl—Electric double layer capacitor; Rct—Charge transfer resistance; L—Inductance; RL—Inductor resistance

    Figure  10.  EIS equivalent circuit diagram of AZ31 and Al-TiC composite coatings

    图  11  AZ31和Al-TiC复合涂层表面腐蚀形貌

    Figure  11.  Corrosion morphologies of AZ31 and Al-TiC composite coatings

    表  1  Al-TiC复合涂层具体粉末配比

    Table  1.   Specific ratios of the Al-TiC composite coatings

    SamplePowders and powder ratio
    Al/wt%TiC/wt%
    Al-5TiC95 5
    Al-10TiC9010
    Al-20TiC8020
    下载: 导出CSV

    表  2  A点和B点的EDS测试结果

    Table  2.   EDS analysis of point A and point B

    PointMg/at%Al/at%Zn/at%TiC/at%C/at%
    A38.3232.430.802.4825.96
    B47.9733.040.850.0918.05
    下载: 导出CSV

    表  3  AZ31和Al-TiC复合涂层的自腐蚀电位和自腐蚀电流

    Table  3.   Self-corrosion potential and self-corrosion current of the AZ31 and Al-TiC composite coatings

    SampleSelf-corrosion potential/VSelf-corrosion current/A
    AZ31 −1.563 1.55×10−4
    Al-5TiC −1.381 2.30×10−4
    Al-10TiC −1.195 7.55×10−5
    Al-20TiC −1.144 2.63×10−6
    下载: 导出CSV

    表  4  等效电路模型拟合的电化学参数

    Table  4.   Electrochemical parameters fitted by the equivalent circuit model

    Parameter Rs/(Ω·cm2) CPEf/(Ω·cm2·Sn) nf Rf/(Ω·cm2) CPEdl/(Ω·cm2·Sn) ndl Rct/(Ω·cm2) L/(H·cm2) RL/(Ω·cm2)
    AZ31 16.50 7.69×10−6 0.91 27.6 13.46 10.29
    Al-5TiC 16.99 7.38×10−6 0.95 118.5 4.36×10−6 0.89 452.2
    Al-10TiC 15.96 3.04×10−5 0.76 506.5 3.22×10−5 0.85 416.3
    Al-20TiC 16.47 1.83×10−5 0.87 1045.0 1.01×10−4 0.68 774.8
    Notes: nf—CPEf index; ndl—CPEdl index.
    下载: 导出CSV
  • [1] JOOST W J, KRAJEWSKI P E. Towards magnesium alloys for high-volume automotive applications[J]. Scripta Materialia,2017,128:107-112. doi: 10.1016/j.scriptamat.2016.07.035
    [2] CHEN J X, TAN L L, YU X M, et al. Mechanical properties of magnesium alloys for medical application: A review[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,87:68-79. doi: 10.1016/j.jmbbm.2018.07.022
    [3] 赵聪铭, 邓坤坤, 聂凯波, 等. 挤压包覆轧制对SiCp增强镁合金(AZ91)复合板显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(1):164-172.

    ZHAO Congming, DENG Kunkun, NIE Kaibo, et al. Effect of extrusion-cladding rolling on microstructure and mecha-nical property of SiCp reinforced magnesium alloy (AZ91) clad plate[J]. Acta Materiae Compositae Sinica,2020,37(1):164-172(in Chinese).
    [4] FRIEDRICH H, SCHUMANN S. Research for a new age of magnesium in the automotive industry[J]. Journal of Materials Processing Technology, 2001, 117: 276-281.
    [5] PARDO A, MERINO M C, COY A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5wt%NaCl[J]. Corrosion Science,2008,50(3):823-834. doi: 10.1016/j.corsci.2007.11.005
    [6] PAITAL S M, BHATTACHARYA A, MONCAYO M, et al. Improved corrosion and wear resistance of Mg alloys via laser surface modification of Al on AZ31 B[J]. Surface and Coatings Technology,2012,206(8-9):2308-2315. doi: 10.1016/j.surfcoat.2011.10.009
    [7] BALAKRISHNAN M, DINAHARAN I, PALANIVEL R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing[J]. Journal of Magnesium and Alloys,2015,3:76-78. doi: 10.1016/j.jma.2014.12.007
    [8] NIE X M, SHEN H Y, FU J Z, et al. Effective control of microstructure evolution in AZ91 D magnesium alloy by SiC nanoparticles in laser powder-bed fusion[J]. Materials and Design,2021,206:109787. doi: 10.1016/j.matdes.2021.109787
    [9] LIU F J, LI Y P, SUN Z Y, et al. Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing[J]. Journal of Materials Research and Technology,2021,11:1019-1030. doi: 10.1016/j.jmrt.2021.01.071
    [10] YANG L Q, LI Z Y, ZHANG Y Q, et al. Al-TiC in situ compo-site coating fabricated by low power pulsed laser cladding on AZ91 D magnesium alloy[J]. Applied Surface Science,2018,435:1187-1198. doi: 10.1016/j.apsusc.2017.11.240
    [11] LIU H X, XU Q, WANG C Q, et al. Corrosion and wear behavior of Ni60 CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing[J]. Journal of Alloys and Compounds,2015,621:357-363. doi: 10.1016/j.jallcom.2014.10.030
    [12] WENG F, YU H J, CHEN C Z, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Materials and Design,2015,80:174-181. doi: 10.1016/j.matdes.2015.05.005
    [13] 王鑫, 潘希德, 牛强, 等. AZ33 M镁合金激光熔覆制备了Al-Si涂层的组织和性能[J]. 金属热处理, 2021, 46(5):202-206.

    WANG Xin, PAN Xide, NIU Qiang, et al. Microstructure and properties of laser clad Al-Si coating on AZ33 M magnesium alloy[J]. Heat Treatment of Metals,2021,46(5):202-206(in Chinese).
    [14] 靳坤, 张英乔, 张涛, 等. AZ91 D镁合金表面激光熔覆Al-Ti-Ni/C涂层的电化学腐蚀行为[J]. 电焊机, 2019, 49(10): 83-87.

    JIN Kun, ZHANG Yingqiao, ZHANG Tao, et al. Electroche-mical corrosion behavior of laser cladding Al-Ti-Ni/C coating on AZ94 D magnesium alloy[J]. Electric Welding Machine, 2019, 49(10): 83-87(in Chinese).
    [15] 刘德坤, 张可敏, 刘应瑞. AZ31镁合金表面Al-Ti-TiB2激光熔覆层的组织和性能[J]. 机械工程材料, 2018, 42(10):24-28, 33. doi: 10.11973/jxgccl201810005

    LIU Dekun, ZHANG Kemin, LIU Yingrui. Microstructure and properties of Al-Ti-TiB2 laser-cladding layer on surface of AZ31 Magnesium Alloy[J]. Materials for Mechani-cal Engineering,2018,42(10):24-28, 33(in Chinese). doi: 10.11973/jxgccl201810005
    [16] LIN P Y, ZHANG Z H, REN L Q. The mechanical properties and microstructures of AZ91 D magnesium alloy processed by selective laser cladding with Al powder[J]. Optics and Laser Technology,2014,60:61-68. doi: 10.1016/j.optlastec.2013.12.024
    [17] AYDIN F, SUN Y, TURAN M E. Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites[J]. Journal of Composite Materials,2020,54:141-152. doi: 10.1177/0021998319860570
    [18] ZHENG B J, CHEN X M, LIAN J S. Microstructure and wear property of laser cladding Al+SiC powders on AZ91 D magnesium alloy[J]. Optics and Laser Technology,2010,48:526-532. doi: 10.1016/j.optlaseng.2010.01.001
    [19] MASSALSKI T B, OKAMOTO H, SUBRAMAMIAN P R, et al. Binary alloy phase diagrams[M]. 2nd Edition. Metals Park: ASM International, 1990: 170.
    [20] LIU F J, JI Y, MENG Q S, et al. Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31 B[J]. Vacuum,2016,133:31-37. doi: 10.1016/j.vacuum.2016.08.010
    [21] LIU F J, JI Y, SUN Z Y, et al. Enhancing corrosion resistance of Al-Cu/AZ31 composites synthesized by a laser cladding and FSP hybrid method[J]. Materials and Manufacturing Processes, 2019, 34: 1458-1466.
    [22] 朱红梅, 龚文娟, 易志威. AZ91镁合金表面激光熔覆Al-Cu 合金涂层的组织与性能[J]. 中国有色金属学报, 2016, 26(7):1498-1504.

    ZHU Hongmei, GONG Wenjuan, YI Zhiwei. Microstructure and property of laser cladding Al-Cu alloy coating on surface of AZ91 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(7):1498-1504(in Chinese).
    [23] 孙琪, 李志勇, 张英乔, 等. AZ91 D 镁合金表面激光熔覆Al-TiC涂层组织和性能的研究[J]. 表面技术, 2017, 46(1):40-44.

    SUN Qi, LI Zhiyong, ZHANG Yingqiao, et al. Microstructure and properties of laser cladding Al-TiC coating on AZ91 D magnesium alloy[J]. Surface Technology,2017,46(1):40-44(in Chinese).
    [24] SONG G L, ATRENS A. Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials,1999,1(1):11-33. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
    [25] 刘奋军, 张媛媛, 刘建勃, 等. 镁合金表面高转速搅拌摩擦加工区的微观组织和耐腐蚀性能[J]. 表面技术, 2021, 50(3):330-337.

    LIU Fenjun, ZHANG Yuanyuan, LIU Jianbo, et al. Microstructure and corrosion resistance of high rotating speed friction stir processed zone on magnesium alloy[J]. Surface Technology,2021,50(3):330-337(in Chinese).
    [26] 楚志兵, 吕阳阳, 唐宾, 等. 表面渗铝改性镁合金的轧制组织性能[J]. 复合材料学报, 2015, 32(5):1374-1380.

    CHU Zhibing, LV Yangyang, TANG Bin, et al. Structure and properties on surface of aluminizing-modification magnesium alloy in rolling[J]. Acta Materiae Compositae Sinica,2015,32(5):1374-1380(in Chinese).
    [27] JALILVAND M N, MAZAHERI Y. Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing[J]. Ceramics International,2020,46:20345-20356. doi: 10.1016/j.ceramint.2020.05.123
    [28] LIU F J, LIU J B, JI Y, et al. Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints[J]. Welding in the World,2021,65:229-241. doi: 10.1007/s40194-020-01012-z
    [29] LIU F J, JI Y, BAI Y X. Influence of multipass high rotating speed friction stir processing on microstructure evolution, corrosion behavior and mechanical properties of stirred zone on AZ31 alloy[J]. Transactions of Nonferrous Metals Society of China,2020,30:3263-3273. doi: 10.1016/S1003-6326(20)65459-0
    [30] BU R, JIN A X, SUN Q, et al. Study on laser cladding and properties of AZ63-Er alloy for automobile engine[J]. Journal of Materials Research and Technology,2020,9(3):5154-5160. doi: 10.1016/j.jmrt.2020.03.032
    [31] ARTHANARI S, LI Y H, NIE L, et al. Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys[J]. Journal of Alloys and Compounds,2020,848:156598. doi: 10.1016/j.jallcom.2020.156598
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  344
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-03-28
  • 录用日期:  2022-03-29
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回