留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能

刘奋军 宁祥 白艳霞 申志康 陈海燕

刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2022, 40(0): 1-11
Fenjun LIU, Xiang NING, Yanxia BAI, Zhikang SHEN, Haiyan CHEN. Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica.
Citation: Fenjun LIU, Xiang NING, Yanxia BAI, Zhikang SHEN, Haiyan CHEN. Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica.

AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能

基金项目: 国家自然科学基金 (51861034, 51974260); 榆林市科技局产学研项目 (2019-86-1, CXY-2020-006-01); 榆林高新区科技创新局产学研项目 (CXY-2021-16); 榆林学院高层次人才项目 (20 GK06); 中国科学院洁净能源创新研究院-榆林学院联合基金项目 (YLU-DNL Fund 2021008)
详细信息
    通讯作者:

    陈海燕,博士,副教授,博士生导师,研究方向为激光复合钎焊的超精密连接及复合材料制备等 E-mail:hychen@nwpu.edu.cn

  • 中图分类号: TB331

Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy

  • 摘要: 为有效改善AZ31镁合金表面的腐蚀性能,本文采用激光熔覆技术在AZ31镁合金表面成功制备了无缺陷的Al-TiC复合涂层。研究了不同成分含量的Al-TiC复合涂层的相组成、微观组织和耐腐蚀性能的影响。结果表明,在Al-TiC复合涂层内形成了大量的Al12Mg17、Mg2Al3和TiC相。复合涂层内微观组织呈现出连续网络状分布特征。随着Al-TiC混合粉末中Al含量的减小,复合涂层中Al12Mg17、Mg2Al3和TiC相的含量呈递增趋势,网络状分布的微观组织结构变得更加均匀连续。复合涂层与AZ31基体之间形成了良好的冶金结合界面。激光熔覆制备的Al-TiC复合涂层耐腐蚀性能较AZ31基体显著提升。自腐蚀电位由基体的−1.563 V提升至−1.144 V,自腐蚀电流由基体的1.55×10−4 A减小至2.63×10−6 A。

     

  • 图  1  SEM粉末形貌图片

    Figure  1.  SEM images of the powders

    图  2  AZ31和Al-TiC复合涂层XRD测试谱图

    Figure  2.  XRD patterns of the AZ31 and Al-TiC composite coatings

    图  3  Al-TiC复合涂层表面(a-c)及横截面(d-f)宏观成型

    Figure  3.  Surface (a-c) and cross-sectional (d-f) morphologies of the Al-TiC composite coatings

    图  4  Al-TiC复合涂层结合界面(a-c)及微观组织(d-f)

    Figure  4.  Bonding interface (a-c) and microstructure (d-f) of the Al-TiC composite coatings

    图  5  Al-TiC复合涂层微观组织

    Figure  5.  Microstructure of the Al-TiC composite coatings

    图  6  Al-TiC复合涂层(Al-5 TiC)元素分布

    Figure  6.  Elemental mappings of the Al-TiC composite coatings (Al-5 TiC)

    图  8  Al-TiC复合涂层(Al-20 TiC)元素分布

    Figure  8.  Elemental mappings of the Al-TiC composite coatings (Al-20 TiC)

    图  7  Al-TiC复合涂层(Al-10 TiC)元素分布

    Figure  7.  Elemental mappings of the Al-TiC composite coatings (Al-10 TiC)

    图  9  AZ31和Al-TiC复合涂层耐腐蚀性能

    Figure  9.  Corrosion resistance of the AZ31 and the Al-TiC composite coatings

    图  10  AZ31和Al-TiC复合涂层的EIS等效电路图

    Figure  10.  EIS equivalent circuit diagram of AZ31 and Al-TiC composite coatings

    图  11  AZ31和Al-TiC复合涂层表面腐蚀形貌

    Figure  11.  Corrosion morphologies of the AZ31 and Al-TiC composite coatings

    表  1  Al-TiC复合涂层具体粉末配比和对应试样编号

    Table  1.   The specific composition ratios and corresponding sample marks of the Al-TiC composite coatings

    Sample marksPowders and powder ratio
    Al/wt%TiC/wt%
    Al-5 TiC955
    Al-10 TiC9010
    Al-20 TiC8020
    下载: 导出CSV

    表  2  A点和B点的EDS测试结果

    Table  2.   EDS analysis of point A and point B

    PointMg/at%Al/at%Zn/at%TiC/at%C/at%
    A38.3232.430.802.4825.96
    B47.9733.040.850.0918.05
    下载: 导出CSV

    表  3  AZ31和Al-TiC复合涂层的自腐蚀电位和自腐蚀电流

    Table  3.   Self-corrosion potential and self-corrosion current of the AZ31 and Al-TiC composite coatings calculated by cathodic Tafel extrapolation

    SamplesSelf-corrosion potential/VSelf-corrosion potential/A
    AZ31 −1.563 1.55×10−4
    Al-5 TiC −1.381 2.30×10−4
    Al-10 TiC −1.195 7.55×10−5
    Al-20 TiC −1.144 2.63×10−6
    下载: 导出CSV

    表  4  等效电路模型拟合的电化学参数

    Table  4.   Electrochemical parameters fitted by the equivalent circuit model

    ParametersAZ31Al-5 TiCAl-10 TiCAl-20 TiC
    Rs/Ω·cm216.516.9915.9616.47
    CPEf/Ω·cm2·Sn/7.38×10−63.04×10−51.83×10−5
    nf/0.950.760.87
    Rf/Ω·cm2/118.5506.51045
    CPEdl/Ω·cm2·Sn7.69×10−64.36×10−63.22×10−51.01×10−4
    ndl0.910.890.850.68
    Rct/Ω·cm227.6452.2416.3774.8
    L/H·cm213.46///
    RL/Ω·cm210.29///
    Notes: Rs—Solution resistance; CPEf—Al-TiC composite coating capacitance; nf—the CPEf index; Rf—Al-TiC composite coating resistance; CPEdl—Electric double layer capacitor; ndl—the CPEdl index; Rct—Charge transfer resistance; L—Inductance; RL—Inductor resistance.
    下载: 导出CSV
  • [1] JOOST W J, KRAJEWSKI P E. Towards magnesium alloys for high-volume automotive applications[J]. Scripta Materialia,2017,128:107-112. doi: 10.1016/j.scriptamat.2016.07.035
    [2] CHEN J X, TAN L L, YU X M, et al. Mechanical properties of magnesium alloys for medical application: A review[J]. Journal of the mechanical behavior of biomedical materials,2018,87:68-79. doi: 10.1016/j.jmbbm.2018.07.022
    [3] 赵聪铭, 邓坤坤, 聂凯波, 等. 挤压包覆轧制对SiCp增强镁合金(AZ91)复合板显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(1):164-172.

    ZHAO C C, DENG K K, NIE K B, et al. Effect of extrusion-cladding rolling on microstructure and mechanical property of SiCp reinforced magnesium alloy (AZ91) clad plate[J]. Acta Materiae Compositae Sinica,2020,37(1):164-172(in Chinese).
    [4] FRIEDRICH H, SCHUMANN S. Research for a new age of magnesium in the automotive industry [J] Journal of Materials Processing Technology, 2001, 117: 276-281.
    [5] PARDO A, MERINO M C, COY A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt% NaCl[J]. Corrosion Science,2008,50(3):823-834. doi: 10.1016/j.corsci.2007.11.005
    [6] PAITAL S M, BHATTACHARYA A, MONCAYO M, et al. Improved corrosion and wear resistance of Mg alloys via laser surface modification of Al on AZ31 B[J]. Surface and Coatings Technology,2012,206(8-9):2308-2315. doi: 10.1016/j.surfcoat.2011.10.009
    [7] BALAKRISHNAN M, DINAHARAN I, PALANIVEL R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing[J]. Journal of Magnesium and Alloys,2015,3:76-78. doi: 10.1016/j.jma.2014.12.007
    [8] NIE X M, SHEN H Y, FU J Z, et al. Effective control of microstructure evolution in AZ91 D magnesium alloy by SiC nanoparticles in laser powder-bed fusion[J]. Materials and Design,2021,206:109787. doi: 10.1016/j.matdes.2021.109787
    [9] LIU F J, LI Y P, SUN Z Y, et al. Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing[J]. Journal of Materials Research and Technology,2021,11:1019-1030. doi: 10.1016/j.jmrt.2021.01.071
    [10] YANG L Q, LI Z Y, ZHANG Y Q, et al. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91 D magnesium alloy[J]. Applied Surface Science,2018,435:1187-1198. doi: 10.1016/j.apsusc.2017.11.240
    [11] LIU H X, XU Q, WANG C Q, et al. Corrosion and wear behavior of Ni60 CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing[J]. Journal of Alloys and Compounds,2015,621:357-363. doi: 10.1016/j.jallcom.2014.10.030
    [12] WENG F, YU H J, CHEN C Z, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6 Al-4 V[J]. Materials and Design,2015,80:174-181. doi: 10.1016/j.matdes.2015.05.005
    [13] 王鑫, 潘希德, 牛强, 等. AZ33 M镁合金激光熔覆制备了Al-Si涂层的组织和性能[J]. 金属热处理, 2021, 46(05):202-206.

    WANG X, PAN X D, NIU Q, et al. Microstructure and properties of laser clad Al-Si coating on AZ33 M magnesium alloy[J]. Heat Treatment of Metals,2021,46(05):202-206(in Chinese).
    [14] 靳坤, 张英乔, 张涛, 等. AZ91 D镁合金表面激光熔覆Al-Ti-Ni/C涂层的电化学腐蚀行为[J]. 电焊机, 2019, 49(10): 83-87.

    JIN K, ZHANG Y Q, ZHANG T, et al. Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coating on AZ94 D magnesium alloy [J]. Electric Welding Machine2019, 49(10): 83-87 (in Chinese).
    [15] 刘德坤, 张可敏, 刘应瑞. AZ31镁合金表面Al-Ti-TiB2激光熔覆层的组织和性能[J]. 机械工程材料, 2018, 42(10):24-28+33. doi: 10.11973/jxgccl201810005

    LIU D K, ZHANG K M, LIU Y R. Microstructure and properties of Al-Ti-TiB2 laser-cladding layer on surface of AZ31 Magnesium Alloy[J]. Materials for Mechanical Engineering,2018,42(10):24-28+33(in Chinese). doi: 10.11973/jxgccl201810005
    [16] LIN P Y, ZHANG Z H, REN L Q. The mechanical properties and microstructures of AZ91 D magnesium alloy processed by selective laser cladding with Al powder[J]. Optics and Laser Technology,2014,60:61-68. doi: 10.1016/j.optlastec.2013.12.024
    [17] AYDIN F, SUN Y, TURAN M E. Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites[J]. Journal of Composite Materials,2020,54:141-152. doi: 10.1177/0021998319860570
    [18] ZHENG B J, CHEN X M, LIAN J S. Microstructure and Wear Property of Laser Cladding Al+SiC Powders on AZ91 D Magnesium Alloy[J]. Optics and Laser Technology,2010,48:526-532. doi: 10.1016/j.optlaseng.2010.01.001
    [19] MASSALSKI T B, OKAMOTO H, SUBRAMAMIAN P R, et al. Binary alloy phase diagrams[J]. 2 nd ed. Metals Park, OH:ASM International,1990:170.
    [20] LIU F J, JI Y, MENG Q S, et al. Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31 B[J]. Vacuum,2016,133:31-37. doi: 10.1016/j.vacuum.2016.08.010
    [21] LIU F J, JI Y, SUN Z Y, et al. Enhancing corrosion resistance of Al-Cu/AZ31 composites synthesized by a laser cladding and FSP hybrid method, Materials and Manufacturing Processes, 2019, 34: 1458-1466.
    [22] 朱红梅, 龚文娟, 易志威. AZ91镁合金表面激光熔覆Al-Cu 合金涂层的组织与性能[J]. 中国有色金属学报, 2016, 26(7):1498-1504.

    ZHU H M, GONG W J, YI Z W. Microstructure and property of laser cladding Al-Cu alloy coating on surface of AZ91 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(7):1498-1504(in Chinese).
    [23] 孙琪, 李志勇, 张英乔, 等. AZ91 D 镁合金表面激光熔覆Al-TiC涂层组织和性能的研究[J]. 表面技术, 2017, 46(1):40-44.

    SUN Q, LI Z Y, ZHANG Y Q, et al. Microstructure and properties of laser cladding Al-TiC coating on AZ91 D magnesium alloy[J]. Surface Technology,2017,46(1):40-44(in Chinese).
    [24] SONG G L, ATRENS A. Corrosion mechanisms of magnesium alloys[J]. Advanced Engineering Materials,1999,1(1):11-33. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
    [25] 刘奋军, 张媛媛, 刘建勃, 等. 镁合金表面高转速搅拌摩擦加工区的微观组织和耐腐蚀性能[J]. 表面技术, 2021, 50(3):330-337.

    LIU F J, ZHANG Y Y, LIU J B, et al. Microstructure and corrosion resistance of high rotating speed friction stir processed zone on magnesium alloy[J]. Surface Technology,2021,50(3):330-337(in Chinese).
    [26] 楚志兵, 吕阳阳, 唐宾, 等. 表面渗铝改性镁合金的轧制组织性能[J]. 复合材料学报, 2015, 32(5):1374-1380.

    CHU Z B, LV Y Y, TANG B, et al. Structure and properties on surface of aluminizing-modification magnesium alloy in rolling[J]. Acta Materiae Compositae Sinica,2015,32(5):1374-1380(in Chinese).
    [27] JALILVAND M N, MAZAHERI Y. Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing[J]. Ceramics International,2020,46:20345-20356. doi: 10.1016/j.ceramint.2020.05.123
    [28] LIU F J, LIU J B, JI Y, et al. Microstructure, mechanical properties, and corrosion resistance of friction stir welded Mg-Al-Zn alloy thick plate joints[J]. Welding in the World,2021,65:229-241. doi: 10.1007/s40194-020-01012-z
    [29] LIU F J, JI Y, BAI Y X. Influence of multipass high rotating speed friction stir processing on microstructure evolution, corrosion behavior and mechanical properties of stirred zone on AZ31 alloy[J]. Transactions of Nonferrous Metals Society of China,2020,30:3263-3273. doi: 10.1016/S1003-6326(20)65459-0
    [30] BU R, JIN A X, SUN Q, et al. Study on laser cladding and properties of AZ63-Er alloy for automobile engine[J]. Journal of Materials Research and Technology,2020,9(3):5154-5160. doi: 10.1016/j.jmrt.2020.03.032
    [31] ARTHANARI S, LI Y H, NIE L, et al. Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys[J]. Journal of Alloys and Compounds,2020,848:156598. doi: 10.1016/j.jallcom.2020.156598
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 录用日期:  2022-03-29
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-04-18

目录

    /

    返回文章
    返回