留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷嘴行进速度及高度对3D打印混凝土力学性能影响的试验

史庆轩 万胜木 王秋维 陶毅 霍建

史庆轩, 万胜木, 王秋维, 等. 喷嘴行进速度及高度对3D打印混凝土力学性能影响的试验[J]. 复合材料学报, 2023, 40(4): 2273-2284. doi: 10.13801/j.cnki.fhclxb.20220607.001
引用本文: 史庆轩, 万胜木, 王秋维, 等. 喷嘴行进速度及高度对3D打印混凝土力学性能影响的试验[J]. 复合材料学报, 2023, 40(4): 2273-2284. doi: 10.13801/j.cnki.fhclxb.20220607.001
SHI Qingxuan, WAN Shengmu, WANG Qiuwei, et al. Experimental investigations on the influence of nozzle travel speed and height on the mechanical properties of 3D printed concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2273-2284. doi: 10.13801/j.cnki.fhclxb.20220607.001
Citation: SHI Qingxuan, WAN Shengmu, WANG Qiuwei, et al. Experimental investigations on the influence of nozzle travel speed and height on the mechanical properties of 3D printed concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2273-2284. doi: 10.13801/j.cnki.fhclxb.20220607.001

喷嘴行进速度及高度对3D打印混凝土力学性能影响的试验

doi: 10.13801/j.cnki.fhclxb.20220607.001
基金项目: 国家自然科学基金 (51878540;52178505)
详细信息
    通讯作者:

    史庆轩,博士,教授,博士生导师,研究方向为混凝土结构及其抗震研究 E-mail: shiqx@xauat.edu.cn

  • 中图分类号: TU528

Experimental investigations on the influence of nozzle travel speed and height on the mechanical properties of 3D printed concrete

Funds: National Natural Science Foundation of China (51878540; 52178505)
  • 摘要: 为研究喷嘴行进速度、喷嘴高度等打印参数对3D打印混凝土力学性能的影响,制备了相同配合比的浇筑试块和不同打印参数组合下的打印试块,通过混凝土立方体抗压试验、棱柱体轴心抗压试验和立方体劈裂抗拉试验,考察了其受力破坏过程和破坏形态,分析了喷嘴行进速度、喷嘴高度对3D打印混凝土力学性能的影响,得到了3D打印混凝土轴心受压应力-应变曲线,建立了3D打印混凝土各强度之间的关系。结果表明:3D打印混凝土立方体抗压强度、轴心抗压强度、劈裂抗拉强度均随喷嘴行进速度的加快、喷嘴高度的升高而降低,且喷嘴高度对强度的不利影响强于喷嘴行进速度;在较优打印参数组合下,打印试块的抗压强度高于浇筑试块,但因打印试块存在层间粘结弱面,其劈裂断面在其层间界面处,致使断面明显平滑,劈裂抗拉强度低于浇筑试块;通过回归分析,建立了3D打印混凝土各强度与打印参数间的函数关系及轴心抗压强度、劈裂抗拉强度与立方体抗压强度之间的换算关系。

     

  • 图  1  打印试块制备过程

    Figure  1.  Preparation process of printed test blocks

    v—Nozzle travel speed; h—Nozzle height

    图  2  3D打印混凝土力学性能试验

    Figure  2.  Mechanical properties tests of 3D printed concrete

    图  3  3D打印混凝土立方体试块受压破坏形态

    Figure  3.  Failure patterns of cube 3D printed concrete after compression test

    140-14—Printed test block with nozzle travel speed of 140 mm/s and nozzle height of 14 mm, and so on, the same below

    图  4  3D打印混凝土棱柱体试块轴心受压破坏形态

    Figure  4.  Failure patterns of prism 3D printed concrete after axial compression test

    图  5  3D打印混凝土立方体试块劈拉破坏断面

    Figure  5.  Failure sections of cube 3D printed concrete after splitting tensile test

    图  6  喷嘴行进速度对3D打印混凝土强度的影响

    Figure  6.  Effect of nozzle travel speed on strength of 3D printed concrete

    图  7  喷嘴高度对3D打印混凝土强度的影响

    Figure  7.  Effect of nozzle height on strength of 3D printed concrete

    图  8  3D打印混凝土不同喷嘴高度下挤出示意图

    Figure  8.  Schematic diagram of extrusion of 3D printed concrete under different nozzle heights

    图  9  3D打印混凝土强度与打印参数的关系

    Figure  9.  Relationship between strength of 3D printed concrete and printed parameters

    v/v0—Nozzle relative travel speed; h/h0—Nozzle relative height; $ {\eta _{{f_{{\text{cu}}}}}} $—Change rate of cubic compressive strength of 3D printed concrete comparedto cast concrete; $ {\eta _{{f_{\text{c}}}}} $—Change rate of axial compressive strength of 3D printed concrete compared to cast concrete; $ {\eta _{{f_{\text{t}}}}} $—Change rate of splittingtensile strength of 3D printed concrete compared to cast concrete

    图  10  3D打印混凝土棱柱体轴心受压应力-应变曲线

    Figure  10.  Axial stress-strain curves of 3D printed concrete prisms

    σ—Stress; ε—Strain

    图  11  打印参数对3D打印混凝土峰值应变ε0的影响

    Figure  11.  Effect of printed parameters on peak strain ε0 of 3D printed concrete

    图  12  打印参数对3D打印混凝土弹性模量Ec的影响

    Figure  12.  Effect of printed parameters on elastic modulus Ec of 3D printed concrete

    图  13  3D打印混凝土弹性模量与轴心抗压强度的关系

    Figure  13.  Relationship between elastic modulus and axial compressive strength of 3D printed concrete

    图  14  3D打印混凝土轴心抗压强度与立方体抗压强度的关系

    Figure  14.  Relationship between axial compressive strength and cubic compressive strength of 3D printed concrete

    图  15  3D打印混凝土劈裂抗拉强度与立方体抗压强度的关系

    Figure  15.  Relationship between splitting tensile strength and cubic compressive strength of 3D printed concrete

    表  1  3D打印混凝土配合比

    Table  1.   Mix proportion of 3D printed concrete wt%

    P·O42.5R·SAC42.5SandPCEHPMCGFWater
    0.80.21.250.250.150.50.35
    Notes: P·O42.5—Ordinary portland cement; R·SAC42.5—Sulpho-aluminate early-strength cement; PCE—Polycarboxylic acid superplasticizer; HPMC—Hydroxypropyl methyl cellulose; GF—Glass fiber.
    下载: 导出CSV

    表  2  3D打印混凝土各项力学性能指标

    Table  2.   Mechanical property indexes of 3D printed concrete

    Sample$ {f_{{\text{cu}}}}/{\text{MPa}} $$ {f_{\text{c}}}/{\text{MPa}} $$ {f_{\text{t}}}/{\text{MPa}} $$ {\varepsilon _{\text{0}}}/{10^{_{ - 3}}} $$ {E_{\text{c}}}/{\text{GPa}} $fc/fcuft/fcu
    110-1445.6435.792.582.2615.770.780.06
    110-1743.5933.972.352.3114.960.780.05
    110-2039.8630.102.061.8214.260.760.05
    120-1444.2133.522.512.9616.020.760.06
    120-1742.9030.912.292.5014.160.720.05
    120-2037.9827.151.931.9415.140.710.05
    130-1443.9932.512.372.6015.610.740.05
    130-1741.3728.342.111.7314.500.690.05
    130-2035.2425.901.682.6314.020.730.05
    140-1442.8431.612.282.6714.630.740.05
    140-1739.4527.061.802.9516.250.690.05
    140-2033.7823.931.492.3113.440.710.04
    150-1441.5930.581.992.6614.300.740.05
    150-1738.0926.751.652.7313.670.700.04
    150-2031.1021.521.152.3312.590.690.04
    Cast42.8234.033.042.1816.520.790.07
    Notes: $ {f_{{\text{cu}}}} $—Cubic compressive strength; $ {f_{\text{c}}} $—Axial compressive strength; $ {f_{\text{t}}} $—Splitting tensile strength; $ {\varepsilon _{\text{0}}} $—Peak strain; $ {E_{\text{c}}} $—Elastic modulus.
    下载: 导出CSV
  • [1] WANGLER T, LLORET E, REITER L, et al. Digital concrete: Opportunities and challenges[J]. RILEM Technical Letters,2016,1:67-75. doi: 10.21809/rilemtechlett.2016.16
    [2] SCHUTTER G D, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete-Technical, economic and environmental potentials[J]. Cement and Concrete Research,2018,112:25-36. doi: 10.1016/j.cemconres.2018.06.001
    [3] 赵颖, 刘维胜, 王欢, 等. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(36):217-220.

    ZHAO Ying, LIU Weisheng, WANG Huan, et al. Influence of limestone powder on performances of 3D printing cementitious materials[J]. Materials Reports,2020,34(36):217-220(in Chinese).
    [4] 马国伟, 柴艳龙, 王里, 等. 3D打印陶砂混凝土的制备与力学性能测试[J]. 实验力学, 2020, 35(1):58-66.

    MA Guowei, CHAI Yanlong, WANG Li, et al. Preparation and mechanical properties testing of 3D printed ceramic sand lightweight concrete[J]. Journal of Experimental Mechanics,2020,35(1):58-66(in Chinese).
    [5] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures,2012,45:1221-1232. doi: 10.1617/s11527-012-9828-z
    [6] PANDA B, TAN M J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing[J]. Ceramics International,2018,44(9):10258-10265. doi: 10.1016/j.ceramint.2018.03.031
    [7] PHAM L, TRAN P, SANJAYAN J. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance[J]. Construction and Building Materials,2020,250:118785. doi: 10.1016/j.conbuildmat.2020.118785
    [8] ZHANG J C, WANG J L, DONG S F, et al. A review of the current progress and application of 3D printed concrete[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105533. doi: 10.1016/j.compositesa.2019.105533
    [9] 岳健广, 张怀奎, 仝飞. 3D打印混凝土硬化后断裂机理试验研究[J]. 建筑结构学报, 2022, 43(9):232-241.

    YUE Jianguang, ZHANG Huaikui, TONG Fei. Fracture mechanism experimental studyof hardened 3D printed concrete[J]. Journal of Building Structures,2022,43(9):232-241(in Chinese).
    [10] PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement,2018,113:108-116. doi: 10.1016/j.measurement.2017.08.051
    [11] TAY Y W D, TING G H A, QIAN Y, et al. Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping,2019,14(1):104-113. doi: 10.1080/17452759.2018.1500420
    [12] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research,2012,42(3):558-566. doi: 10.1016/j.cemconres.2011.12.003
    [13] SANJAYAN J G, NEMATOLLAHI B, XIA M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete[J]. Construction and Building Materials,2018,172:468-475. doi: 10.1016/j.conbuildmat.2018.03.232
    [14] WOLFS R J M, BOS F P, SALET T A M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion[J]. Cement and Concrete Research,2019,119:132-140. doi: 10.1016/j.cemconres.2019.02.017
    [15] 刘致远, 王振地, 王玲, 等. 3D打印水泥净浆层间拉伸强度及层间剪切强度[J]. 硅酸盐学报, 2019, 47(5):648-652.

    LIU Zhiyuan, WANG Zhendi, WANG Ling, et al. Interlayer bond strength of 3D printing cement paste by cross-bonded method[J]. Journal of the Chinese Ceramic Society,2019,47(5):648-652(in Chinese).
    [16] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese)
    [17] 王晖. 耐碱玻璃纤维混凝土力学性能试验研究[D]. 西安: 西安建筑科技大学, 2016.

    WANG Hui. Experimental study on mechanical properties of alkali-resistance glass fiber reinforced concrete[D]. Xi'an: Xi'an University of Architecture & Technology, 2016(in Chinese).
    [18] HOSSEINI E, ZAKERTABRIZI M, KORAYEM A H, et al. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation[J]. Cement and Concrete Composites,2019,99:112-119. doi: 10.1016/j.cemconcomp.2019.03.008
    [19] MOINI M, OLEK J, MAGEE B, et al. Additive manufacturing and characterization of architectured cement-based materials via X-ray micro-computed tomography[C]//First RILEM International Conference on Concrete and Digital Fabrication. Zurich, 2019: 176-189.
    [20] TAY Y W D, LI M Y, TAN M J. Effect of printing parameters in 3D concrete printing: Printing region and support structures[J]. Journal of Materials Processing Technology,2019,271:261-270. doi: 10.1016/j.jmatprotec.2019.04.007
    [21] VAN DER PUTTEN J, DE SCHUTTER G, VAN TITTELBOOM K. The effect of print parameters on the (micro)structure of 3D printed cementitious materials[C]. FirstRILEM International Conference on Concrete and DigitalFabrication. Zurich, 2019: 234-244.
    [22] 程文博. 打印参数对3D打印水泥基材料施工性能的影响[D]. 北京: 北京交通大学, 2020.

    CHENG Wenbo. Effect of printing parameters on the construction performance of 3D printing cement-based materials[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese).
    [23] PANDA B, MOHAMEL N A, PAUL S C, et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete[J]. Materials,2019,12:1-12.
    [24] PERROT A, RANGEARD D, PIERRE A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures,2016,49:1213-1220. doi: 10.1617/s11527-015-0571-0
    [25] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003: 16-17.

    GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyse[M]. Beijing: Tsinghua University Press, 2003: 16-17(in Chinese).
    [26] 中国建筑科学研究院. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    China Academy of Building Research. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  323
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 修回日期:  2022-05-19
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回