留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同应力状态下TiB2/Al复合材料的断裂行为:失效判据校准与评价

王瑞丰 郭伟国 刘兰亭 袁康博

王瑞丰, 郭伟国, 刘兰亭, 等. 不同应力状态下TiB2/Al复合材料的断裂行为:失效判据校准与评价[J]. 复合材料学报, 2021, 39(0): 1-11
引用本文: 王瑞丰, 郭伟国, 刘兰亭, 等. 不同应力状态下TiB2/Al复合材料的断裂行为:失效判据校准与评价[J]. 复合材料学报, 2021, 39(0): 1-11
Ruifeng WANG, Weiguo GUO, Lanting LIU, Kangbo YUAN. Fracture behavior of TiB2/Al composite under different stress states: Calibration and evaluation of fracture criteria[J]. Acta Materiae Compositae Sinica.
Citation: Ruifeng WANG, Weiguo GUO, Lanting LIU, Kangbo YUAN. Fracture behavior of TiB2/Al composite under different stress states: Calibration and evaluation of fracture criteria[J]. Acta Materiae Compositae Sinica.

不同应力状态下TiB2/Al复合材料的断裂行为:失效判据校准与评价

基金项目: 国家自然科学基金(11872051;12072287);西北工业大学博士论文创新基金(CX2021043)
详细信息
    通讯作者:

    郭伟国,博士,教授,博士生导师,研究方向为材料动态塑性流动本构关系及失效判据 E-mail: weiguo@nwpu.edu.cn

  • 中图分类号: TB331, O341

Fracture behavior of TiB2/Al composite under different stress states: Calibration and evaluation of fracture criteria

  • 摘要: 复杂应力状态下韧性材料的变形和断裂行为与单轴加载通常具有很大差别,因此近年来失效判据的发展及其在仿真领域的应用得到广泛关注。为了精准地预测工程材料断裂行为,分析不同失效判据模型在较宽应力状态范围内的适用性差异并选择合适的模型至关重要。为了探究原位自生TiB2/Al复合材料的断裂行为,在不同应力状态(应力三轴度−0.82~1.03,Lode角参数−1~1)下进行了系统的断裂试验和微观分析,结果表明该材料的断裂行为和微观机制与应力状态密切相关;除了应力三轴度外,失效判据模型中应该进一步考虑Lode角参数影响以更精确预测宽应力状态下的断裂行为。基于系统的试验结果,对5种典型的失效判据模型参数进行标定,并对这些模型在宽应力状态范围内对断裂行为预测能力开展了对比和评价。全面考虑应力三轴度、Lode角参数和截断值的失效判据模型能够更准确地描述复合材料在复杂应力状态下的断裂行为。

     

  • 图  1  原位自生TiB2/2024 Al复合材料测试前初始微观结构

    Figure  1.  Initial microstructure of in-situ TiB2/2024 Al composite before testing

    图  2  不同应力三轴度的TiB2/2024Al复合材料轴对称拉伸试样载荷-位移曲线

    Figure  2.  Force-strain curves for axisymmetric tensile TiB2/2024 Al composite specimens with different initial triaxiality

    图  3  不同应力三轴度的TiB2/2024Al复合材料轴对称压缩试样载荷-位移曲线

    Figure  3.  Force-strain curves for axisymmetric compressive TiB2/2024 Al composite specimens with different initial triaxiality

    图  4  不同应力状态下TiB2/2024Al复合材料断裂应变变化规律

    Figure  4.  Variation of the ductile fracture strain with the stress state for the TiB2/2024 Al composite

    图  5  不同应力状态下的TiB2/2024Al复合材料断裂微观结构

    Figure  5.  Fracture microstructures of the TiB2/2024 Al composite under different stress states

    图  6  常应变模型预测的TiB2/2024 Al复合材料断裂轨迹与试验结果对比

    Figure  6.  Comparison of experimental data and constant equivalent strain fracture locus of the TiB2/2024 Al composite

    图  7  J-C模型预测的TiB2/2024Al复合材料断裂轨迹与试验结果对比

    Figure  7.  Comparison of experimental data and J-C fracture locus of the TiB2/2024 Al composite

    图  8  B-W模型预测的TiB2/2024Al 复合材料断裂轨迹与试验结果对比

    Figure  8.  Comparison of experimental data and B-W fracture locus of the TiB2/2024 Al composite

    图  9  L-Y模型预测的TiB2/2024Al 复合材料断裂轨迹与试验结果对比

    Figure  9.  Comparison of experimental data and L-Y fracture locus of the TiB2/2024 Al composite

    图  10  修正的M-C模型预测的TiB2/2024Al 复合材料断裂轨迹与试验结果对比

    Figure  10.  Comparison of experimental data and modified M-C fracture locus of the TiB2/2024 Al composite

    图  11  TiB2/2024Al 复合材料不同失效判据模型预测结果与试验结果对比:(a) $ \stackrel{-}{\theta }\text{}\text{=}\text{}\text{±1} $, (b) $ \stackrel{-}{\theta }\text{}\text{=}\text{} $0

    Figure  11.  Comparison of prediction of all fracture criteria relatively with the experimental data of the TiB2/2024 Al composite: (a) $ \stackrel{-}{\theta }\text{}\text{=}\text{}\text{±1} $, (b) $ \stackrel{-}{\theta }\text{}\text{=}\text{} $0

    图  12  不同失效判据模型对TiB2/2024 Al复合材料试验结果的描述误差

    Figure  12.  Comparison of different fracture criteria in description of experimental data of the TiB2/2024 Al composite

    图  13  不同失效判据模型对TiB2/2024 Al复合材料应力三轴度截断区域的预测结果对比

    Figure  13.  Comparison of different fracture criteria in prediction of cut-off region for stress triaxiality of the TiB2/2024 Al composite

    表  1  6类用于原位自生TiB2/2024 Al复合材料断裂应变标定的试样形式

    Table  1.   Six types of specimens for fracture strain calibration of in-situ TiB2/2024 Al composite

    Specimen typeSpecimen shapeLode angle parameter $ \stackrel{-}{\theta } $Stress triaxiality ηEquivalent fracture strain $ \stackrel{-}{{\epsilon }_{\mathrm{f}}} $
    Smooth round bar, tension$1$1/3$2\ln \left( {\dfrac{ { {a_0} } }{ { {a_{\text{f} } } } } } \right)$[24]
    Notched round bars, tension1$\dfrac{1}{3} + \ln \left( {1 + \dfrac{ { {a_0} } }{ {2{R_0} } } } \right)$[13]$2\ln \left( {\dfrac{ { {a_0} } }{ { {a_{\text{f} } } } } } \right)$[24]
    Pure shear00$\dfrac{2}{ {\sqrt 3 } }{\sinh ^{ - 1} }\left( {\dfrac{ {\Delta u} }{ {2{L_0} } } } \right)$[26]
    Flate grooved plane strain specimen, tension0$\dfrac{ {\sqrt 3 } }{3}\left[ {1 + 2\ln \left( {1 + \dfrac{ { {\delta _0} } }{ {4{R_0} } } } \right)} \right]$[24]$\dfrac{2}{ {\sqrt 3 } }\ln \left( {\dfrac{ { {\delta _0} } }{ { {\delta _{\text{f} } } } } } \right)$[24]
    Cylindrical specimen, compression−1−1/3$2\ln \left( {\dfrac{ { {a_{\text{f} } } }}{ { {a_0} } } } \right)$[24]
    Notched round bar, compression−1$- \dfrac{1}{3} - \ln \left( {1 + \dfrac{ { {a_0} } }{ {2{R_0} } } } \right)$[25]$2\ln \left( {\dfrac{ { {a_{\text{f} } } }}{ { {a_0} } } } \right)$[24]
    Notes:a0 is the initial radius at the minimum cross section of a smooth round bar or a notched round bar; af is the radius at fracture; R0 is the initial radius at the notch of a notched round bar or a flat grooved plate; ∆u is displacement to fracture of a pure shear specimen; L0 is the initial gauge width of a pure shear specimen; δ0 is the thickness at the minimum cross section of a flat grooved plate; δf is the thickness at fracture.
    下载: 导出CSV

    表  2  Johnson-Cook失效判据中材料参数值

    Table  2.   Determined values of the Johnson-Cook fracture criterion parameters

    A1A2A3A4A5
    0.080.11−4.70
    下载: 导出CSV

    表  3  Bai-Wierzbicki失效判据中材料参数值

    Table  3.   Determined values of the Bai-Wierzbicki fracture criterion parameters

    B1B2B3B4B5B6
    0.18−0.970.17−1.200.31−2.04
    下载: 导出CSV

    表  4  Lou-Yooh失效判据中材料参数值

    Table  4.   Determined values of the Lou-Yooh fracture criterion parameters

    C1C2C3C4
    0.711.090.120.28
    下载: 导出CSV

    表  5  修正的Mohr-Coulomb失效判据中材料参数值

    Table  5.   Determined values of the modified Mohr-Coulomb fracture criterion parameters

    A/Mpanc1c2/MPa$ {\text{c}}_{\text{θ}}^{\text{c}} $$ {\text{c}}_{\text{θ}}^{\text{s}} $
    795.00.140.105333.81.00.924
    下载: 导出CSV
  • [1] SU J, LI Y, DUAN M, et al. Investigation on Particle Strengthening Effect in in-situ TiB2/2024 Composite by Nanoindentation Test[J]. Materials Science & Engineering A,2018,727:29-37.
    [2] WANG R, GUO W, WANG J, et al. Effects of stress state, strain rate, and temperature on fracture behavior of in situ TiB2/2024 Al composite[J]. Mechanics of Materials,2020,151:103641. doi: 10.1016/j.mechmat.2020.103641
    [3] KARTHISELVA N, BAKSHI S. Carbon nanotube and in-situ titanium carbide reinforced titanium diboride matrix composites synthesized by reactive spark plasma sintering[J]. Materials Science & Engineering A,2016:38-48.
    [4] YANG H, CAI Z, ZHANG Q, et al. Comparison of the effects of Mg and Zn on the interface mismatch and compression properties of 50vol% TiB2/Al composites[J]. Ceramics International,2021,47:22121-22129. doi: 10.1016/j.ceramint.2021.04.234
    [5] LI W, YANG Y, LIU J, et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia,2017,136:90-104. doi: 10.1016/j.actamat.2017.07.003
    [6] JIANG R, CHEN X, GE R, et al. Influence of TiB2 particles on machinability and machining parameter optimization of TiB2/Al MMCs[J]. Chinese Journal of Aeronautics,2018,31(1):187-196. doi: 10.1016/j.cja.2017.03.012
    [7] GENG J, LIU G, WANG F, et al. Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate[J]. Materials Science & Engineering A,2017,687:131-140.
    [8] LIN K, WANG W, JIANG R, et al. Thermo-Mechanical Behavior and Constitutive Modeling of In Situ TiB2/7050 Al Metal Matrix Composites Over Wide Temperature and Strain Rate Ranges[J]. Materials,2019,12(8):1212. doi: 10.3390/ma12081212
    [9] WANG H, ZHANG H, CUI Z, et al. Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite[J]. Transactions of Nonferrous Metals Society of China,2021,31(5):1235-1248. doi: 10.1016/S1003-6326(21)65574-7
    [10] 叶想平, 李英雷, 翁继东, 等. 颗粒增强金属基复合材料的强化机理研究现状[J]. 材料工程, 2018, 46(12):28-37. doi: 10.11868/j.issn.1001-4381.2016.001214

    YE Xiangping, LI Yinglei, WENG Jidong, et al. Research Status on Strengthening Mechanism of Particle-reinforced Metal Matrix Composites[J]. Journal of materials engineering,2018,46(12):28-37(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001214
    [11] GAO X, ZHANG T, HAYDEN M, et al. Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy[J]. International Journal of Plasticity,2009,25(12):2366-2382. doi: 10.1016/j.ijplas.2009.03.006
    [12] OROWAN E. Notch brittleness and the strength of metals[J]. Transactions of the Institution of Engineers and Shipbuilders in Scotland,1945,89:165-215.
    [13] BRIDGMAN P. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure[M]. New York: McGraw-Hill, 1952.
    [14] HANCOCK J, MACKENZIE A. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of Mechanics Physics of Solids, 24(2-3): 147-160.
    [15] HANCOCK J, BROWN D. On the role of strain and stress state in ductile failure[J]. Journal of Mechanics Physics of Solids,1983,31(1):1-24. doi: 10.1016/0022-5096(83)90017-0
    [16] MCCLINTOCK F. A Criterion for Ductile Fracture by the Growth of Holes[J]. Journal of Applied Mechanics,1968,35(2):363-371. doi: 10.1115/1.3601204
    [17] RICE J, TRACEY D. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of Mechanics Physics of Solids, 17(3): 201-217.
    [18] KIM J, ZHANG G, GAO X. Modeling of ductile fracture: Application of the mechanism-based concepts[J]. International Journal of Solids and Structures,2007,44(6):1844-1862. doi: 10.1016/j.ijsolstr.2006.08.028
    [19] BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity,2008,24(6):1071-1096. doi: 10.1016/j.ijplas.2007.09.004
    [20] GANJIANI M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle[J]. European Journal of Mechanics/A Solids,2020,84:104048. doi: 10.1016/j.euromechsol.2020.104048
    [21] JOHNSON G, COOK W. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics,1985,21(1):31-48. doi: 10.1016/0013-7944(85)90052-9
    [22] LOU Y, YOON J, HUH H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J]. International Journal of Plasticity,2014,54(1):56-80.
    [23] BAI Y, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture,2010,161(1):1-20. doi: 10.1007/s10704-009-9422-8
    [24] BAI Y, TENG X, WIERZBICKI T. On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing[J]. Journal of Engineering Materials and Technology,2009:131.
    [25] WANG J, GUO W, GUO J, et al. The Effects of Stress Triaxiality, Temperature and Strain Rate on the Fracture Characteristics of a Nickel-Base Superalloy[J]. Journal of Materials Engineering and Performance,2016,25(5):2043-2052. doi: 10.1007/s11665-016-2049-9
    [26] BUTCHER C, ABEDINI A. Shear confusion: Identification of the appropriate equivalent strain in simple shear using the logarithmic strain measure[J]. International Journal of Mechanical Sciences,2017,134:273-283. doi: 10.1016/j.ijmecsci.2017.10.005
    [27] HUANG J, GUO Y, QIN D, et al. Influence of stress triaxiality on the failure behavior of Ti-6Al-4V alloy under a broad range of strain rates[J]. Theoretical and Applied Fracture Mechanics,2018,97:48-61. doi: 10.1016/j.tafmec.2018.07.008
    [28] ROTH C, MOHR D. Determining the Strain to Fracture for Simple Shear for a Wide Range of Sheet Metals[J]. International Journal of Mechanical ences,2018,149:224-240. doi: 10.1016/j.ijmecsci.2018.10.007
    [29] MIRONE G, CORALLO D. A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening[J]. International Journal of Plasticity,2010,26(3):348-371. doi: 10.1016/j.ijplas.2009.07.006
    [30] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences,2004,46(1):81-98. doi: 10.1016/j.ijmecsci.2004.02.006
  • 加载中
计量
  • 文章访问数:  121
  • HTML全文浏览量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 录用日期:  2021-12-03
  • 修回日期:  2021-11-25
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回