留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯-羰基铁粉线材的制备及其吸波性能分析

叶喜葱 欧阳宾 杨超 胡正浪 何恩义 吴海华

叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7): 3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008
引用本文: 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7): 3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008
YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008
Citation: YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008

石墨烯-羰基铁粉线材的制备及其吸波性能分析

doi: 10.13801/j.cnki.fhclxb.20210819.008
基金项目: 国家自然科学基金(51575313);宜昌市石墨-石墨烯增材制造重点实验室(YKLGAM202001)
详细信息
    通讯作者:

    叶喜葱,博士,教授,硕士生导师,研究方向为先进材料成形制造 E-mail: yexc@ctgu.edu.cn

  • 中图分类号: TB333

Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance

  • 摘要: 为了提高单一磁性吸波材料的吸波性能,以聚乳酸(PLA)作为基体材料,将磁性材料羰基铁粉(CIP)与石墨烯(RGO)进行复合,制备RGO-CIP/PLA复合材料。通过TG、XRD等多种测试手段对复合材料的结构、形貌等进行表征。同时使用矢量网络分析仪对复合材料的电磁参数进行测试,计算出不同厚度的吸波性能,研究了RGO的添加量对RGO-CIP/PLA复合材料的吸波性能影响。结果表明:当RGO质量分数为4wt%,CIP质量分数为20wt%时,RGO-CIP/PLA复合材料吸波性能最优;吸收厚度为3 mm时,达到了−27.25 dB最小的RL值,同时其吸收带宽为2.922 GHz (7.227~10.149 GHz)。同时,随着其吸收厚度的增加,有效吸收带宽(RL<−10 dB)会移动至较低的频带。

     

  • 图  1  聚乳酸(PLA) (a)、羰基铁粉(CIP) (b)和石墨烯(RGO) (c)的原始形貌图

    Figure  1.  Original morphology of polylactic acid (PLA) (a), carbonyl iron powder (CIP) (b) and graphene (RGO) (c)

    图  2  RGO-CIP/PLA复合粉末DSC曲线

    Figure  2.  DSC curves of RGO-CIP/PLA composite powder

    图  3  挤出机各部分示意图

    Figure  3.  Schematic diagram of each part of the extruder

    图  4  复合材料测试用同轴环

    Figure  4.  Coaxial ring for testing of composite materials

    图  5  不同RGO含量的RGO-CIP/PLA复合材料的XRD图

    Figure  5.  XRD patterns of RGO-CIP/PLA composites with different RGO contents

    X—Mass fraction of RGO

    图  6  RGO-CIP/PLA复合材料的TG图

    Figure  6.  TG diagram of RGO-CIP/PLA composites

    图  7  不同RGO含量同轴环的电磁参数:在2~18 GHz频率范围内,介电常数的实部(a)、虚部(b);磁导率的实部(c)、虚部(d);介电损耗角正切(e)和磁损耗角正切(f)

    Figure  7.  Electromagnetic parameters of coaxial rings with different RGO contents: In the frequency range of 2-18 GHz, real part (a) and imaginary part (b) of the complex permittivity; Real part (c) and imaginary part (d) of the complex magnetic conductivity; Dielectric loss tangent (e) and magnetic loss tangent (f)

    图  8  不同RGO含量的RGO-CIP/PLA复合材料的反射损耗与频率之间的关系:(a) d=1 mm;(b) d=2 mm;(c) d=3 mm;(d) d=4 mm

    Figure  8.  Relationship between the reflection loss and frequency of RGO-CIP/PLA composites with different RGO contents: (a) d =1 mm; (b) d=2 mm; (c) d=3 mm; (d) d=4 mm

    图  9  不同RGO含量的RGO-CIP/PLA复合材料的SEM图像:(a) 0wt%;(b) 1wt%;(c) 2wt%;(d) 3wt%;(e) 4wt%;(f) 5wt%

    Figure  9.  SEM images of RGO-CIP/PLA composite material with different RGO contents: (a) 0wt%; (b) 1wt%; (c) 2wt%; (d) 3wt%; (e) 4wt%; (f) 5wt%

    图  10  不同RGO含量的RGO-CIP/PLA复合材料的三维微波反射损耗图:(a) 0wt% RGO;(b) 1wt% RGO;(c) 2wt% RGO;(d) 3wt%RGO;(e) 4wt% RGO;(f) 5wt% RGO

    Figure  10.  Three-dimensional microwave reflection loss diagrams of RGO-CIP/PLA composites with different RGO contents: (a) 0wt% RGO; (b) 1wt% RGO; (c) 2wt% RGO; (d) 3wt% RGO; (e) 4wt% RGO; (f) 5wt% RGO

    图  11  不同RGO含量的RGO-CIP/PLA复合材料的阻抗匹配图

    Figure  11.  Impedance matching diagram of RGO-CIP/PLA composites with different RGO contents

    表  1  RGO-CIP/ PLA复合粉末的组成

    Table  1.   Composition of RGO-CIP/PLA composite powder

    Sample numberMass fraction/wt%
    RGOCIPPLA
    0wt%RGO-CIP/PLA 0 20 80
    1wt%RGO-CIP/PLA 1 20 79
    2wt%RGO-CIP/PLA 2 20 78
    3wt%RGO-CIP/PLA 3 20 77
    4wt%RGO-CIP/PLA 4 20 76
    5wt%RGO-CIP/PLA 5 20 75
    Notes: RGO—Reduced graphene oxide; CIP—Carbonyl iron powder; PLA— Polylactic acid.
    下载: 导出CSV

    表  2  RGO-CIP/PLA复合粉末DSC曲线数据

    Table  2.   DSC curve datas of RGO-CIP/PLA composite powder

    Sample numberRGO
    content/
    wt%
    Tm/℃Tc/℃Tg/℃
    0wt%RGO-CIP/PLA 0 113.79 97.98 82.86
    1wt%RGO-CIP/PLA 1 112.1 100.38 81.67
    2wt%RGO-CIP/PLA 2 112.6 98.99 79.69
    3wt%RGO-CIP/PLA 3 111.9 99.30 82.59
    4wt%RGO-CIP/PLA 4 112.1 99.65 83.52
    5wt%RGO-CIP/PLA 5 112.6 101.24 82.59
    Notes: Tm—The melting temperature of the composite material; Tc—The crystallization temperature of the composite material; Tg—The glass transition temperature of the composite material.
    下载: 导出CSV

    表  3  熔融沉积3D (FDM3D)打印参数

    Table  3.   FDM3D printing parameters

    ItemPrinting parameters
    Nozzle 1 temperature/℃ 150
    Nozzle 2 temperature/℃ 0
    Panel temperature/℃ 40
    下载: 导出CSV

    表  4  RGO-CIP/PLA复合材料与其他复合吸波材料的性能比较

    Table  4.   Performance comparisons of RGO-CIP/PLA composite materials and other composite absorbing materials

    AbsorbersMinimum
    reflection loss/dB
    Thickness/
    mm
    Ref.
    Fe(CO)5 −3 1 [21]
    Fe3O4SrFe12O19 −17.7 3 [22]
    FeNi50-PLA −14.3 3 [23]
    MnO2-RGO −19.2 1.5 [24]
    RGO-Fe3O4 −25 3 [25]
    Fe(CO)5-RGO −27.25 3 This work
    下载: 导出CSV
  • [1] CHENG Y, ZHU W D, LU X F, et al. Recent progress of electros pun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications,2021,27:100823.
    [2] ZHANG Z, CHEN X, WANG Z, et al. Carbonyl iron/graphite microspheres with good impedance matching for ultra-broadband and highly efficient electromagnetic absorption[J]. Optical Materials Express,2018,8(11):3319-3331. doi: 10.1364/OME.8.003319
    [3] MA J, SHU J, CAO W, et al. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@ rGO/SiO2 composites[J]. Composites Part B: Engineering,2019,166:187-195. doi: 10.1016/j.compositesb.2018.11.119
    [4] YE F, SONG Q, ZHANG Z, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption[J]. Advanced Functional Materials,2018,28(17):1707205. doi: 10.1002/adfm.201707205
    [5] MA X T, JIANG Z P, WANG F S, et al. Numerical study of thermal effect in silicone rubber filled with carbonyl iron powder under microwave radiation[J]. Journal of Materials Science,2021,56:10264-10281.
    [6] GONG M J, DONG Y Q, HUANG J J, et al. The enhanced magnetic properties of FeSiCr powder cores composited with carbonyl iron powder[J]. Journal of Materials Science: Materials in Electronics,2021,32(7):8829-8836.
    [7] JING H X, LI Q L, YE Y, et al. Preparationand microwave absorbing properties of Fe(CO)5/BaTiO3 composites[J]. Journal of Materials Engineering,2015,43(7):38-42.
    [8] DING G X, CHEN C X, TAI H X, et al. Structural characterization and microwave absorbing performance of CuFe2O4/RGO composites[J]. Journal of Solid State Chemistry,2021,297:122051.
    [9] WANG X, SHU J C, HE X M, et al. Green approach to conductive PEDOT: PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):14017-14025. doi: 10.1021/acssuschemeng.8b02534
    [10] ZHANG M M, ZHANG J W, LV X Y, et al. How to exhibit the efficient electromagnetic wave absorbing performance of rgo aerogels: Less might be better[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5496-5500.
    [11] ZHANG M M, ZHANG J W, LV X Y, et al. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: Less might be better[J]. Journal of Materials Science: Materials in Electronics,2018,29(7):5496-5500.
    [12] GAO Y, GAO X, LI J, et al. Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinylchloride) composites[J]. Journal of Applied Polymer Science,2017,135(12):45846.
    [13] LIU X G, WU N D, CUI C Y, et al. Facilepreparation of carbon-coated Mg nanocapsulesas light microwave absorber[J]. Materials Letters,2015,149:12-14.
    [14] PRAVEEN C, BINOD K K, SANTANU D, et al. Theoretical circuit modeling of tetra bands DNG metamaterial by transmission line theory with very small frequency[J]. Journal of Computational Electronics,2021,20:1439-1451.
    [15] WANG Y, LUO F, ZHOU W C, et al. Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range[J]. Ceramics International,2014,3(64):10749-10754.
    [16] ZHANG Z Q, WEI J Q, YANG W F, et al. Effect of shape of sendust particles on their electromagnetic properties within 0.1-18 GHz range[J]. Physica B,2011,406:3896-3900.
    [17] 杜捷. 氧化石墨烯/聚脲复合材料制备与性能研究[D]. 广州: 暨南大学, 2020.

    DU Jie. Preparation and properties of graphene oxide/polyurea composite materials[D]. Guangzhou: Jinan University, 2020(in Chinese).
    [18] WANG X X, MA T, SHU J C, et al. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth[J]. Chemical Engineering Journal,2018,332:321-330. doi: 10.1016/j.cej.2017.09.101
    [19] LI Y, SUN N, LIU J, et al. Multifunctional BiFeO3 composites: Absorption attenuation dominated effective electromagnetic interferenceshielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations[J]. Composites Science and Technology,2018,159:240-250. doi: 10.1016/j.compscitech.2018.02.014
    [20] YUAN Z F, ZHAO H, ZHOU J. Design and preparation of the epoxy resin based sandwich composite with broad-band wave-absorbing properties in C-band[J]. Rare Metal Materials and Engineering,2020,49(11):3782-3789.
    [21] 范明远. 羰基铁粉/热塑性树脂复合材料的制备及其吸波性能研究[D]. 上海: 东华大学, 2019.

    FAN Mingyuan. Preparation of carbonyl iron powder/thermoplastic resin composite and its microwave absorbing properties[D]. Shanghai: Donghua University, 2019(in Chinese).
    [22] 景红霞, 李巧玲, 叶云, 等. 纳米Fe3O4及Fe3O4-SrFe12O19吸波复合材料的制备及性能[J]. 复合材料学报, 2013, 30(1):130-134.

    JING Hongxia, LI Qiaoling, YE Yun, et al. Preparation and properties of nano-Fe3O4 and Fe3O4-SrFe12O19 absorbing composite materials[J]. Acta Materiae Compositae Sinica,2013,30(1):130-134(in Chinese).
    [23] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1): 158-168.

    WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 158-168(in Chinese).
    [24] 黄海波, 沈勇, 杨明荣, 等. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6):154-157+159.

    HUANG Haibo, SHEN Yong, YANG Mingrong, et al. Study on preparation and microwave absorbin g properties of sea urchin-like MnO2/RGO composite materials[J]. Modern Engineering,2018,38(6):154-157+159(in Chinese).
    [25] 黄琪惠, 张豹山, 唐东明, 等. 石墨烯-Fe@Fe3O4纳米复合材料的制备及其电磁性能研究[J]. 无机化学学报, 2012, 28(10):2077-2082.

    HUANG Qihui, ZHANG Baoshan, TANG Dongming, et al. Preparation and electromagnetic properties of graphene-Fe@Fe3O4 nanocomposites[J]. Chinese Journal of Inorganic Chemistry,2012,28(10):2077-2082(in Chinese).
    [26] ZUO Y X, YAO Z J, LIN H Y, et al. Digital light processing 3D printing of graphene/carbonyl iron/polymethyl methacrylate nanocomposites for efficient microwave absorption[J]. Composites Part B: Engineering,2019,179:107533.
    [27] NING M, LI J, KUANG B, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles(M=Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science,2018,447:244-253. doi: 10.1016/j.apsusc.2018.03.242
    [28] LIU P, NG HONG V M, YAO Z, et al. Facile synthesis and hierarchical assembly of flowerlike NiO2 structures with enhanced dielectric and microwave absorption properties[J]. ACS Applied Materials & Interfaces,2017,9(19):16404-16416. doi: 10.1021/acsami.7b02597
    [29] WEI X, GEN Y, SONG B, et al. Construction of caterpillar-like hierarchically structured Co/MnO2/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption[J]. Carbon,2021,3(173):521-527.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  501
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-07-09
  • 录用日期:  2021-08-12
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回