留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丹宁酸刻蚀ZIF-67制备导热增强型定形相变材料的性能

郭文尧 王骏驰 李辉 李国宁 郭敏 崔萍 陆万鹏 周守军 于明志

郭文尧, 王骏驰, 李辉, 等. 丹宁酸刻蚀ZIF-67制备导热增强型定形相变材料的性能[J]. 复合材料学报, 2023, 40(5): 3026-3036. doi: 10.13801/j.cnki.fhclxb.20220830.001
引用本文: 郭文尧, 王骏驰, 李辉, 等. 丹宁酸刻蚀ZIF-67制备导热增强型定形相变材料的性能[J]. 复合材料学报, 2023, 40(5): 3026-3036. doi: 10.13801/j.cnki.fhclxb.20220830.001
GUO Wenyao, WANG Junchi, LI Hui, et al. Thermal storage performance of shape stabilized phase change materials with high thermal conductivity derived from ZIF-67 etched via tannic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3026-3036. doi: 10.13801/j.cnki.fhclxb.20220830.001
Citation: GUO Wenyao, WANG Junchi, LI Hui, et al. Thermal storage performance of shape stabilized phase change materials with high thermal conductivity derived from ZIF-67 etched via tannic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 3026-3036. doi: 10.13801/j.cnki.fhclxb.20220830.001

丹宁酸刻蚀ZIF-67制备导热增强型定形相变材料的性能

doi: 10.13801/j.cnki.fhclxb.20220830.001
基金项目: 中国博士后科学基金项目(2021M702017);山东省博士后创新项目(202102034)
详细信息
    通讯作者:

    李辉,博士,副教授,硕士生导师,研究方向为生物质能源的开发与利用、储能技术 E-mail: lihui@sdjzu.edu.cn

  • 中图分类号: TB332

Thermal storage performance of shape stabilized phase change materials with high thermal conductivity derived from ZIF-67 etched via tannic acid

Funds: China Postdoctoral Science Foundation (2021M702017); Shandong Provincial Postdoctoral Innovation Project (202102034)
  • 摘要: 为解决有机固-液相变材料(PCMs)导热系数低和相变易泄漏的难题,利用丹宁酸刻蚀ZIF-67制备碳基骨架作为支撑体(HX-C),硬脂酸(SA)为相变芯材,采用真空熔融吸附法构筑导热增强型定形相变材料(SA/HX-C)。为评估其储热能力,对热稳定性、储热性能、导热系数、定形能力及光热转换能力进行研究。同时,借助氮气等温吸附-脱附、傅里叶红外光谱、X-射线衍射和扫描电子显微镜进行表征。结果表明:丹宁酸刻蚀ZIF-67可实现对其碳化衍生物的扩孔作用,提高SA/HX-C的定形能力。所制备的SA/HX-C具有良好的储热性能、导热能力及光热转换性能。其中,刻蚀时间为6 min的复合相变材料(SA/H6-C)的储热效率可达80.84%,光热转化效率高达76.29%,导热系数(0.461 W/(m·K))相比于SA提高了156.11%。SA/H6-C在相变过程中无任何形貌变化和泄漏,重复循环储/放热100次后仍然具有良好的储热能力。

     

  • 图  1  支撑体(HX-C)的氮气等温吸附-脱附曲线(a)和孔径分布曲线(b)

    STP—Standard temperature and pressure; dVp/dDp—Rate of change of pore volume with aperture

    Figure  1.  Nitrogen isothermal adsorption-desorption (a) and pore diameter distributions (b) for supports (HX-C)

    图  2  HX-C (a)和复合相变材料(硬脂酸(SA)/HX-C) (b)的FTIR图谱

    Figure  2.  FTIR spectra of HX-C (a) and composite phase change materials (Stearic acid (SA)/HX-C) (b)

    图  3  HX-C (a)、HX-C的5°~40°窄范围(b)和SA/HX-C (c)的XRD图谱

    Figure  3.  XRD patterns of HX-C (a), narrow range 5°-40° of HX-C (b) and SA/HX-C (c)

    图  4  ZIF-67 (a)、H0-C (b)、H6 (c)、H6-C (d)和SA/H6-C (e)的SEM图像

    Figure  4.  SEM images of ZIF-67 (a), H0-C (b), H6 (c), H6-C (d) and SA/H6-C (e)

    图  5  SA和SA/HX-C的热稳定性

    Figure  5.  Thermal stability of SA and SA/HX-C

    图  6  SA/HX-C的DSC曲线

    Figure  6.  DSC curves of SA/HX-C

    图  7  SA和SA/HX-C加热前后图像及泄漏率记录

    Figure  7.  Images of leakage rate for SA and SA/HX-C before and after heating

    图  8  SA/H6-C循环储/放热100次的形貌和质量记录

    Figure  8.  Shape and quality records of SA/H6-C cyclic storage/exhaust heat 100 times

    图  9  SA/H6-C循环储/放热100次前后的DSC曲线

    Figure  9.  DSC curves of SA/H6-C before and after 100 cycles of storage/exhaust heat

    图  10  SA/H6-C循环储/放热100次前后的XRD图谱(a)和FTIR图谱(b)

    Figure  10.  XRD patterns (a) and FTIR spectra (b) of SA/H6-C before and after 100 cycles of storage/exhaust heat

    图  11  SA和SA/H6-C的光热转换曲线

    Figure  11.  Photo-thermal conversion curves of SA and SA/H6-C

    图  12  SA/H6-C加热过程红外热成像记录

    Figure  12.  IR images of heating process for SA/H6-C

    表  1  SA/HX-C制备参数

    Table  1.   Preparation parameters of SA/HX-C

    Precursor Etching time/min Support Carbonization temperature/℃ Composite PCM SA mass fraction/wt%
    ZIF-67 0 H0-C 700 SA/H0-C 60
    ZIF-H3 3 H3-C SA/H3-C
    ZIF-H4 4 H4-C SA/H4-C
    ZIF-H6 6 H6-C SA/H6-C
    ZIF-H8 8 H8-C SA/H8-C
    ZIF-H10 10 H10-C SA/H10-C
    Notes: PCM—Phase change material; SA—Stearic acid.
    下载: 导出CSV

    表  2  HX-C的比表面积、孔容和平均孔径

    Table  2.   Surface area, pore volume and average pore diameter of HX-C

    SampleSurface area/(m2·g−1)Pore volume/(cm3·g−1)Average pore diameter/nm
    H0-C357.630.2402.63
    H3-C259.740.3376.02
    H4-C247.110.3817.43
    H6-C249.130.3867.46
    H8-C238.530.4329.43
    H10-C267.300.4989.69
    下载: 导出CSV

    表  3  SA和SA/HX-C的热性能

    Table  3.   Thermal properties of SA and SA/HX-C

    SampleTm/Tf /℃ΔHmHf/(J·g−1)ΔT/℃λ/(W·(m·K)−1)
    SA68.53/65.01220.28/221.483.520.180
    SA/H0-C67.72/67.12109.52/110.480.600.452
    SA/H3-C67.53/66.70106.80/101.430.770.453
    SA/H4-C67.53/66.84109.34/103.210.690.457
    SA/H6-C67.38/66.70109.93/104.350.680.461
    SA/H8-C67.25/66.55109.09/100.270.700.456
    SA/H10-C67.17/66.32109.67/99.800.750.458
    Notes: Tm, Tf and ΔT—Melting temperature, solidification temperature and supercooling; ΔHm and ΔHf—Latent heat of melting and latent heat of solidification; λ—Thermal conductivity.
    下载: 导出CSV

    表  4  SA/H6-C循环储/放热100次前后的热性能

    Table  4.   Thermal properties of SA/H6-C before and after 100 cycles of storage/exhaust heat

    Cycle timeTm/Tf/℃ΔHmHf/(J·g−1)ΔT/℃
    Before the cycle67.38/66.70109.93/104.350.68
    After 100 cycles67.39/66.71109.25/103.720.68
    下载: 导出CSV
  • [1] XIA R, ZHANG W, YANG Y, et al. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation[J]. Journal of Cleaner Production,2021,296:126598. doi: 10.1016/j.jclepro.2021.126598
    [2] NALLUSAMY N, SAMPATH S, VELRAJ R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources[J]. Renewable Energy,2007,32(7):1206-1227. doi: 10.1016/j.renene.2006.04.015
    [3] 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9):3553-3564.

    WU Shaofei, YAN Ting, KUAI Zihan, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal,2019,70(9):3553-3564(in Chinese).
    [4] 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7):674-683. doi: 10.1360/N972017-00831

    ZHAI Tianyao, LI Tingxian, WU Si, et al. Preparation and thermal performance of form-stable expanded graphite/stearic acid composite phase change materials with high thermal conductivity[J]. Chinese Science Bulletin,2018,63(7):674-683(in Chinese). doi: 10.1360/N972017-00831
    [5] CHENG X, LI G, YU G, et al. Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials[J]. Journal of Materials Science,2017,52(20):12370-12379. doi: 10.1007/s10853-017-1350-9
    [6] YANG X, GUO Z, LIU Y, et al. Effect of inclination on the thermal response of composite phase change materials for thermal energy storage[J]. Applied Energy,2019,238:22-33. doi: 10.1016/j.apenergy.2019.01.074
    [7] WU S, LI T X, YAN T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer,2016,102:733-744. doi: 10.1016/j.ijheatmasstransfer.2016.06.066
    [8] HEKIMOĞLU G, SARI A, KAR T, et al. Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties[J]. Journal of Energy Storage,2021,35:102288. doi: 10.1016/j.est.2021.102288
    [9] LI C, ZHAO X, ZHANG B, et al. Stearic acid/copper foam as composite phase change materials for thermal energy storage[J]. Journal of Thermal Science,2020,29(2):492-502. doi: 10.1007/s11630-020-1272-8
    [10] KHADIRAN T, HUSSEIN M Z, ZAINAL Z, et al. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material[J]. Energy,2015,82:468-478. doi: 10.1016/j.energy.2015.01.057
    [11] WANG X, CHENG X, LI D, et al. Preparation a three-dimensional hierarchical graphene/stearic acid as a phase change materials for thermal energy storage[J]. Materials Research Express,2020,7(9):95506. doi: 10.1088/2053-1591/abb69e
    [12] MA X, LIU F, HELIAN Y, et al. Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review[J]. Energy Conversion and Management,2021,229:113760. doi: 10.1016/j.enconman.2020.113760
    [13] LI H, LIU F, MA X, et al. An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification[J]. Renewable Energy,2020,149:816-827. doi: 10.1016/j.renene.2019.12.118
    [14] ZHANG H, NAI J, YU L, et al. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications[J]. Joule,2017,1(1):77-107. doi: 10.1016/j.joule.2017.08.008
    [15] CRAVILLON J, NAYUK R, SPRINGER S, et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering[J]. Chemistry of Materials,2011,23(8):2130-2141. doi: 10.1021/cm103571y
    [16] HU Y, SONG X, ZHENG Q, et al. Zeolitic imidazolate framework-67 for shape stabilization and enhanced thermal stability of paraffin-based phase change materials[J]. RSC Advances,2019,9(18):9962-9967. doi: 10.1039/C9RA00874H
    [17] CHEN X, GAO H, XING L, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials[J]. Energy Storage Materials,2019,18:280-288. doi: 10.1016/j.ensm.2018.08.024
    [18] FU Y, ZHEN L, ZHOU B, et al. New strategy of synthesizing zeolitic imidazolate framework-67 with hierarchical pores for heat storage[J]. Materials Letters,2021,293:129722.
    [19] ZHANG W, JIANG X, ZHAO Y, et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis[J]. Chemical Science,2017,8(5):3538-3546. doi: 10.1039/C6SC04903F
    [20] QIAN T, LI J, MIN X, et al. Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials[J]. ACS Sustainable Chemistry and Engineering,2018,6(1):897-908. doi: 10.1021/acssuschemeng.7b03267
    [21] LI D, CHENG X, LI Y, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy,2018,171:142-149. doi: 10.1016/j.solener.2018.06.062
    [22] WEI H, XIE X, LI X, et al. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material[J]. Applied Energy,2016,178:616-623. doi: 10.1016/j.apenergy.2016.06.109
    [23] WANG X, ZHONG W, LI Y. Nanoscale Co-based catalysts for low-temperature CO oxidation[J]. Catalysis Science and Technology,2015,5(2):1014-1020. doi: 10.1039/C4CY01147C
    [24] ZHANG Q, LIU J. Sebacic acid/CNT sponge phase change material with excellent thermal conductivity and photo-thermal performance[J]. Solar Energy Materials and Solar Cells,2018,179:217-222. doi: 10.1016/j.solmat.2017.11.019
    [25] ADVINCULA P A, DE LEON A C, RODIER B J, et al. Accommodating volume change and imparting thermal conductivity by encapsulation of phase change materials in carbon nanoparticles[J]. Journal of Materials Chemistry A,2018,6(6):2461-2467. doi: 10.1039/C7TA09664J
    [26] ZHANG N, YUAN Y, YUAN Y, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy,2014,110:64-70. doi: 10.1016/j.solener.2014.09.003
    [27] ZHANG X, LIN Q, LUO H, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy,2020,260:114278. doi: 10.1016/j.apenergy.2019.114278
    [28] YUAN Y, ZHANG N, LI T, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study[J]. Energy,2016,97:488-497. doi: 10.1016/j.energy.2015.12.115
    [29] ATINAFU D G, DONG W, HUANG X, et al. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy,2018,211:1203-1215. doi: 10.1016/j.apenergy.2017.12.025
    [30] DING J, WU X, SHEN X, et al. A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation[J]. Energy,2020,210:118478. doi: 10.1016/j.energy.2020.118478
    [31] LI A, WANG J, DONG C, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity[J]. Applied Energy,2018,217:369-376. doi: 10.1016/j.apenergy.2017.12.106
    [32] ATINAFU D G, DONG W, HOU C, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy,2019,12:239-249. doi: 10.1016/j.mtener.2019.01.011
    [33] LU A, LI W, SALABAS E, et al. Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon[J]. Chemistry of Materials,2006,18(8):2086-2094. doi: 10.1021/cm060135p
    [34] QIAN T, ZHU S, WANG H, et al. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites[J]. ACS Sustainable Chemistry and Engineering,2018,7(2):2446-2458.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  293
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-07-21
  • 录用日期:  2022-08-18
  • 网络出版日期:  2022-08-31
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回