留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响

古艳玲 陈扬 安金华 涂坚 黄灿 周志明 罗晋如

古艳玲, 陈扬, 安金华, 等. 碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响[J]. 复合材料学报, 2022, 40(0): 1-14
引用本文: 古艳玲, 陈扬, 安金华, 等. 碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响[J]. 复合材料学报, 2022, 40(0): 1-14
Yanling GU, Yang CHEN, Jinhua AN, Jian TU, Can HUANG, Zhiming ZHOU, Jinru LUO. Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites[J]. Acta Materiae Compositae Sinica.
Citation: Yanling GU, Yang CHEN, Jinhua AN, Jian TU, Can HUANG, Zhiming ZHOU, Jinru LUO. Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites[J]. Acta Materiae Compositae Sinica.

碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响

基金项目: 国家自然科学基金 (52171052);国家自然科学基金 (U20 B2009);重庆市科技局基础研究与前沿探索专项(重庆市自然科学基金) (cstc2020 jcyj-msxmX0587)
详细信息
    通讯作者:

    涂坚,博士,副教授,硕士生导师,研究方向为先进合金材料设计与制备 E-mail: tujian@cqut.edu.cn

  • 中图分类号: TG113

Effect of carbide ceramic particles on the microstructure and mechanical properties of dual-phase high-entropy alloy matrix composites

  • 摘要: 高熵合金拓宽了复合材料中金属基体的选用范围。本研究通过外加碳化物陶瓷颗粒,利用电弧熔炼技术制备Fe49.5Mn30Co10Cr10X0.5(X=B4C,ZrC和TiC)等三种高熵合金复合材料,系统研究三种碳化物陶瓷颗粒对双相高熵合金基复合材料微观组织和力学性能的影响。研究结果表明,掺杂碳化物陶瓷颗粒均可细化高熵合金基体的晶粒尺寸,稳定fcc相,抑制hcp相形成,其中B4C陶瓷颗粒细化晶粒和稳定fcc相效果最显著。掺杂ZrC和B4C陶瓷颗粒样品,力学性能低于高熵合金基体样品,归因于ZrC和B4C陶瓷颗粒与基体之间的界面结合情况不佳,界面处出现孔洞性缺陷;而掺杂TiC陶瓷颗粒样品,其强韧化效果显著,归因于良好的界面结合,细晶强化,弥散强化及颗粒承载强化等。

     

  • 图  1  (a)纽扣状铸态样品;(b)热压缩后变形样品

    Figure  1.  (a)The button-like as-cast sample; (b) the deformation sample after thermal compression

    图  2  拉伸件尺寸

    Figure  2.  Sizes of tensile sample

    图  3  相含量随温度变化图:(a)Fe50Mn30Co10Cr10;(b)Fe50Mn30Co10Cr10(B4C)0.5;(c)Fe50Mn30Co10Cr10(ZrC)0.5;(d)Fe50Mn30Co10Cr10(TiC)0.5

    Figure  3.  Fraction of stable phases as function of temperature: (a) Fe50Mn30Co10Cr10; (b)Fe50Mn30Co10Cr10(B4C)0.5; (c)Fe50Mn30Co10Cr10(ZrC)0.5; (d)Fe50Mn30Co10Cr10(TiC)0.5

    图  4  Fe50Mn30Co10Cr10、Fe50Mn30Co10Cr10(B4C)0.5、Fe50Mn30Co10Cr10(ZrC)0.5和Fe50Mn30Co10Cr10(TiC)0.5四种均匀态样品的EBSD图:(a1-d1)反极图;(a2-d2)相图;(a3-d3)晶界图

    Figure  4.  EBSD maps of four homogeneous samples, including Fe50Mn30Co10Cr10, Fe50Mn30Co10Cr10(B4C)0.5, Fe50Mn30Co10Cr10(ZrC)0.5 and Fe50Mn30Co10Cr10(TiC)0.5: (a1-d1) reverse pole figure; (a2-d2) phase map; (a3-d3) grain boundary map

    图  5  Fe50Mn30Co10Cr10,Fe50Mn30Co10Cr10(B4C)0.5,Fe50Mn30Co10Cr10(ZrC)0.5和Fe50Mn30Co10Cr10(TiC)0.5四种再结晶态样品的EBSD图:(a1-d1)反极图;(a2-d2)相图;(a3-d3)晶界图

    Figure  5.  EBSD maps of four recrystallized samples, including Fe50Mn30Co10Cr10, Fe50Mn30Co10Cr10(B4C)0.5, Fe50Mn30Co10Cr10(ZrC)0.5 and Fe50Mn30Co10Cr10(TiC)0.5: (a1-d1) reverse pole map; (a2-d2) phase map; (a3-d3) Grain boundary map

    图  6  再结晶态样品的ECC图:(a)Fe50Mn30Co10Cr10;(b)Fe50Mn30Co10Cr10(B4C)0.5;(c)Fe50Mn30Co10Cr10(ZrC)0.5;(d)Fe50Mn30Co10Cr10(TiC)0.5

    Figure  6.  ECC maps of four recrystallized samples, including: (a)Fe50Mn30Co10Cr10; (b)Fe50Mn30Co10Cr10(B4C)0.5; (c)Fe50Mn30Co10Cr10(ZrC)0.5; (d)Fe50Mn30Co10Cr10(TiC)0.5

    图  7  再结晶态Fe50Mn30Co10Cr10(B4C)0.5样品界面:(a)和(b)B4C陶瓷颗粒与Fe50Mn30Co10Cr10结合界面;(c)和(d)EDS元素线扫描和面扫描图

    Figure  7.  Interface images of as-recrystallized Fe50Mn30Co10Cr10(B4C)0.5: (a) and (b) SEM images of the interface between B4C ceramic particles and Fe50Mn30Co10Cr10; (c) and (d) SEM-EDS element line scan and surface scan images

    图  8  再结晶态Fe50Mn30Co10Cr10(ZrC)0.5样品界面:(a)和(b)ZrC陶瓷颗粒与Fe50Mn30Co10Cr10结合的界面SEM图;(c)和(d)SEM-EDS元素线扫描和面扫描图

    Figure  8.  Interface images of as-recrystallized Fe50Mn30Co10Cr10(ZrC)0.5: (a) and (b) SEM images of the interface between ZrC ceramic particles and Fe50Mn30Co10Cr10; (c) and (d) SEM-EDS element line scan and surface scan images

    图  9  再结晶态Fe50Mn30Co10Cr10(TiC)0.5样品界面:(a)和(b)TiC陶瓷颗粒与基体结合的界面SEM图;(c)和(d)SEM-EDS元素线扫描和面扫描图

    Figure  9.  Interface images of as-recrystallized Fe50Mn30Co10Cr10(TiC)0.5: (a) and (b) SEM images of the interface between TiC ceramic particles and Fe50Mn30Co10Cr10; (c) and (d) SEM-EDS element line scan and surface scan images

    图  10  (a)工程应力—应变曲线;(b)加工硬化曲线;样品的断口形貌;(c)Fe50Mn30Co10Cr10[39],(d)Fe50Mn30Co10Cr10(B4C)0.5[39],(e)Fe50Mn30Co10Cr10(ZrC)0.5,(f)Fe50Mn30Co10Cr10(TiC)0.5

    Figure  10.  (a)Engineering stress-strain curve; (b)work hardening curve; fracture morphology of the sample; (c)Fe50Mn30Co10Cr10, (d)Fe50Mn30Co10Cr10(B4C)0.5, (e)Fe50Mn30Co10Cr10(ZrC)0.5, (f) Fe50Mn30Co10Cr10(TiC)0.5

    表  1  粉末的基本参数

    Table  1.   Basic parameters of powder

    PowderFeMnCoCrB4CZrCTiC
    Particle size/μm0.50.50.50.50.040.040.04
    Purity
    /wt.%
    99.999.999.999.999.999.999.9
    下载: 导出CSV

    表  2  Fe50Mn30Co10Cr10,Fe50Mn30Co10Cr10(B4C)0.5,Fe50Mn30Co10Cr10(ZrC)0.5和Fe50Mn30Co10Cr10(TiC)0.5四种再结晶态样品的力学性能

    Table  2.   The mechanical properties of four recrystallizedsamples of Fe50Mn30Co10Cr10, Fe50Mn30Co10Cr10(B4C)0.5, Fe50Mn30Co10Cr10(ZrC)0.5 and Fe50Mn30Co10Cr10(TiC)0.5

    SamplesYield stress/MPaUltimate tensile strength/MPaFracture elongation
    Fe50Mn30Co10Cr1020674744%
    Fe50Mn30Co10Cr10(B4C)0.544183722%
    Fe50Mn30Co10Cr10(ZrC)0.516947319%
    Fe50Mn30Co10Cr10(TiC)0.538688647%
    下载: 导出CSV
  • [1] FANG Y, X WANG Y Q, ZHANG P, et al. Research on chip formation mechanism and surface morphology of particle-reinforced metal matrix composites[J]. The International Journal of Advanced Manufacturing Technology,2021,117:3793-3804. doi: 10.1007/s00170-021-07921-7
    [2] SHUVHO M B A, CHOWDHURY M A, KCHAOU M, et al. Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles[J]. Chemical Data Collections,2020,28:100442. doi: 10.1016/j.cdc.2020.100442
    [3] PARIYAR A, PERUGU C S, DASH K, et al. Microstructure and mechanical behavior of high toughness Al-based metal matrix composite reinforced with in-situ formed nickel aluminides[J]. Materials Characterization,2021,171:110766. doi: 10.1016/j.matchar.2020.110766
    [4] 徐圣航, 周承商, 刘咏. 金属-金属层状结构复合材料研究进展[J]. 中国有色金属学报, 2019, 29(6):1125-1142. doi: 10.19476/j.ysxb.1004.0609.2019.06.01

    XU Shenghang, ZHOU Chengshang, LIU Yong. Research progress in metal-metal laminated structural composites[J]. Transactions of Nonferrous Metals Society of China,2019,29(6):1125-1142(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2019.06.01
    [5] 康蒙, 程小全, 张纪奎, 等. 高体积分数SiCP/Al 复合材料的拉伸, 压缩与弯曲特性[J]. 复合材料学报, 2008, 25(3):127-131. doi: 10.3321/j.issn:1000-3851.2008.03.022

    KANG Meng, CHENG Xiaoquan, ZHANG Jikui, et al. Tensile compressive and flexible properties of high volume fraction SiCP/Al composites[J]. Acta MateriaeCompositaeSinica,2008,25(3):127-131(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.03.022
    [6] 倪嘉, 柴皓, 史昆, 等. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(S2):369-373.

    NI Jia, CHAI Hao, SHI Kun, et al. Research progress of titanium matrix composites reinforced by particle[J]. Materials Reports,2019,33(S2):369-373(in Chinese).
    [7] 袁秋红, 周国华, 廖琳, 等. 不同纳米碳材料增强镁基复合材料的显微组织与力学性能[J]. 中国有色金属学报, 2021, 31(1):30-41. doi: 10.11817/j.ysxb.1004.0609.2021-36552

    YUAN Qiuhong, ZHOU Guohua, LIAO Lin, et al. Microstructures and mechanical properties of Mg-based composites reinforced with different nano-carbon materials[J]. Transactions of Nonferrous Metals Society of China,2021,31(1):30-41(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2021-36552
    [8] 曹利, 王传英, 邵贝羚, 等. SiCp/Al 复合材料的组织与断口分析[J]. 复合材料学报, 1992, 9(3):19-22.

    CAO Li, WANG Chuanying, SHAO Beiling, et al. Analysis of microstructure and fracture in SiCP/Al composites[J]. ActaMateriaeCompositaeSinica,1992,9(3):19-22(in Chinese).
    [9] 顾冬冬, 沈以赴. 颗粒增强铜基复合材料的选区激光烧结制备[J]. 复合材料学报, 2007, 24(1):53-59. doi: 10.3321/j.issn:1000-3851.2007.01.009

    GU Dongdong, SHEN Yifu. Fabrication of particle reinforced copper matrix composites by selective laser sintering[J]. ActaMateriaeCompositaeSinica,2007,24(1):53-59(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.009
    [10] YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today,2016,19(6):349-362. doi: 10.1016/j.mattod.2015.11.026
    [11] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. ActaMaterialia,2017,122:448-511.
    [12] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science,2014,345(6201):1153-1158. doi: 10.1126/science.1254581
    [13] SU J, RAABE D, LI Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy[J]. ActaMaterialia,2019,163:40-54.
    [14] 马国彬, 谭建波. 颗粒增强金属基复合材料的研究现状[J]. 铸造设备与工艺, 2019(2):50-54. doi: 10.16666/j.cnki.issn1004-6178.2019.02.016

    MA Guobin, TAN Jianbo. Research status of particle reinforced metal matrix composites[J]. Foundry Equipment and Technology,2019(2):50-54(in Chinese). doi: 10.16666/j.cnki.issn1004-6178.2019.02.016
    [15] 张洁, 程晓农, 罗锐, 等. 碳化硼对高熵合金结构及性能的影响[J]. 金属热处理, 2020, 45(6):173-177. doi: 10.13251/j.issn.0254-6051.2020.06.036

    ZHANG Jie, CHENG Xiaonong, LUO Rui, et al. Effect of B4C on microstructure and properties of high- entropy alloy[J]. Heattreatment of metal,2020,45(6):173-177(in Chinese). doi: 10.13251/j.issn.0254-6051.2020.06.036
    [16] ROGAL Ł, KALITA D, LITYNSKA-DOBRZYNSKA L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3[J]. Intermetallics,2017,86:104-109. doi: 10.1016/j.intermet.2017.03.019
    [17] ROGAL Ł, KALITA D, TARASEK A, et al. Effect of SiCnano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy[J]. Journal of Alloys and Compounds,2017,708:344-352. doi: 10.1016/j.jallcom.2017.02.274
    [18] 高银, 刘涛, 韩勇, 等. TiC对 W-7 Cu 复合材料组织与性能的影响[J]. 中国有色金属学报, 2020, 30(6):1281-1288. doi: 10.11817/j.ysxb.1004.0609.2020-36394

    GAO Yin, LIU Tao, HAN Yong, et al. The impact of. Effects of TiC on microstructure and properties of W-7 Cu composites[J]. Transactions of Nonferrous Metals Society of China,2020,30(6):1281-1288(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-36394
    [19] WU H, HUANG S R, ZHAO C M, et al. Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles[J]. Intermetallics,2020,127:106983. doi: 10.1016/j.intermet.2020.106983
    [20] PENG Y, ZHANG W, LI T, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding[J]. Surface and Coatings Technology,2020,385:125326. doi: 10.1016/j.surfcoat.2019.125326
    [21] ZHANG J F, JIA T, QIU H, et al. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. Journal of Materials Science & Technology,2020,42:122-129.
    [22] 权高峰, 柴东朗, 宋余九, 等. 增强体种类及含量对金属基复合材料力学性能的影响[J]. 复合材料学报, 1999, 16(2):62-66. doi: 10.3321/j.issn:1000-3851.1999.02.012

    QUAN Gaofeng, CHAI Donglang, SONG Yujiu, et al. Effect of category and content of reinforcements on mechanical properties of metal matrix composites[J]. ActaMateriaeCompositaeSinica,1999,16(2):62-66(in Chinese). doi: 10.3321/j.issn:1000-3851.1999.02.012
    [23] 刘怡, 涂坚, 杨威华, 等. 形变及退火工艺对 Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12):1569-1580.

    LIU Yi, TU Jian, YANG Weihua, et al. Effect of Deformation and Annealing Treatment on Microstructure Evolution of Fe47Mn30Co10Cr10B3 Dual-Phase High-Entropy Alloy[J]. ActaMetallurgicaSinica,2020,56(12):1569-1580(in Chinese).
    [24] LIU Y, TU J, DENG L, et al. Characteristics of thermal- and strain-induced ε-martensite in Fe50Mn30Co10Cr10 multi-component alloy: Effect of grain size[J]. Materials Characterization,2021,171:110817. doi: 10.1016/j.matchar.2020.110817
    [25] WANG J Y, FANG J H, YANG H L, et al. Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites[J]. Transactions of Nonferrous Metals Society of China,2019,29(7):1484-1494. doi: 10.1016/S1003-6326(19)65055-7
    [26] ZHANG M, LI R D, YUAN T C, et al. Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering[J]. Powder Technology,2019,343:58-67. doi: 10.1016/j.powtec.2018.11.005
    [27] YIM D, SATHIYAMOORTHI P, HONG S J, et al. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering[J]. Journal of Alloys and Compounds,2019,781:389-396. doi: 10.1016/j.jallcom.2018.12.119
    [28] YUE X Y, WANG J J, YU S Y, et al. Microstructure and mechanical properties of a three-layer B4C/Al–B4C/TiB2–B4C composite[J]. Materials & Design,2013,46:285-290.
    [29] WEI X F, SONG J X, LIU J X, et al. Graphite nanoplatelets toughened zirconium carbide ceramics prepared by spark plasma sintering[J]. Ceramics International,2021,47(6):8461-8467. doi: 10.1016/j.ceramint.2020.11.212
    [30] YANG M X, YAN D S, YUAN F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength[J]. Proceedings of the National Academy of sciences,2018,115(28):7224-7229. doi: 10.1073/pnas.1807817115
    [31] FU Z Q, MACDONALD B E, LI Z M, et al. Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility[J]. Materials Research Letters,2018,6(11):634-640. doi: 10.1080/21663831.2018.1526222
    [32] SUN X D, ZHU H G, LI J L, et al. High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers[J]. Materials Chemistry and Physics,2018,220:449-459. doi: 10.1016/j.matchemphys.2018.09.022
    [33] CHENG H, CHEN W, LIU X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy[J]. Materials Science and Engineering:A,2018,719:192-198. doi: 10.1016/j.msea.2018.02.040
    [34] LI C, ZHANG F Y, HE J N, et al. Microstructure evolution and mechanical properties of reactive plasma sprayed Ti3SiC2–Ti5Si3–TiC composite coatings[J]. Materials Chemistry and Physics,2020,254:123495. doi: 10.1016/j.matchemphys.2020.123495
    [35] ZHU T, WU H, ZHOU R, et al. Microstructures and Tribological Properties of TiC Reinforced FeCoNiCuAl High-Entropy Alloy at Normal and Elevated Temperature[J]. Metals,2020,10(3):387. doi: 10.3390/met10030387
    [36] 张堃, 吴姚莎, 刘晓飞, 等. TiB2/AlSi10 Mg 选区激光熔化成形组织与性能[J]. 有色金属工程, 2021, 11(12):43-49. doi: 10.3969/j.issn.2095-1744.2021.12.007

    ZHANG Kun, WU Yaosha, LIU Xiaofei, et al. Microstructure and Properties of TiB2/AlSi10 Mg Composite Prepared by Selective Laser Melting[J]. Nonferrous Metals Engineering,2021,11(12):43-49(in Chinese). doi: 10.3969/j.issn.2095-1744.2021.12.007
    [37] WU H, HUANG S R, ZHAO C M, et al. Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles[J]. Intermetallics,2020,127:106983. doi: 10.1016/j.intermet.2020.106983
    [38] LI G D, LIU M W, LYU S, et al. Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design[J]. ScriptaMaterialia,2021,191:196-201.
    [39] DENG L, BAI C Y, JIANG Z T, et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy[J]. Materials Science and Engineering:A,2021,822:141642. doi: 10.1016/j.msea.2021.141642
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 录用日期:  2022-06-04
  • 修回日期:  2022-06-02
  • 网络出版日期:  2022-06-24

目录

    /

    返回文章
    返回