留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂复合材料预紧力齿连接试验

高一峰 张冬冬 赵启林 李飞

高一峰, 张冬冬, 赵启林, 等. 碳纤维增强树脂复合材料预紧力齿连接试验[J]. 复合材料学报, 2022, 39(12): 6065-6077. doi: 10.13801/j.cnki.fhclxb.20211125.001
引用本文: 高一峰, 张冬冬, 赵启林, 等. 碳纤维增强树脂复合材料预紧力齿连接试验[J]. 复合材料学报, 2022, 39(12): 6065-6077. doi: 10.13801/j.cnki.fhclxb.20211125.001
GAO Yifeng, ZHANG Dongdong, ZHAO Qilin, et al. Experimental study on the pre-tightened tooth connection of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6065-6077. doi: 10.13801/j.cnki.fhclxb.20211125.001
Citation: GAO Yifeng, ZHANG Dongdong, ZHAO Qilin, et al. Experimental study on the pre-tightened tooth connection of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6065-6077. doi: 10.13801/j.cnki.fhclxb.20211125.001

碳纤维增强树脂复合材料预紧力齿连接试验

doi: 10.13801/j.cnki.fhclxb.20211125.001
基金项目: 国家自然科学基金(52008390;51708552);江苏省自然科学基金(BK20170752);香江学者计划(XJ2019042);青年人才托举工程(17-JCJQ-QT-020)
详细信息
    通讯作者:

    张冬冬,博士,副教授,硕士生导师,研究方向为应急桥梁设计理论与关键技术、复合材料结构与力学 E-mail:zhangdodo1986@sohu.com

  • 中图分类号: TB333

Experimental study on the pre-tightened tooth connection of carbon fiber reinforced polymer

  • 摘要: 为探明桥梁用碳纤维增强树脂复合材料(CFRP)预紧力齿连接破坏模式和承载性能,以预紧力(23 MPa、34.6 MPa、53 MPa、64.5 MPa)、齿深(0.5 mm、1 mm、2 mm)、齿长(8 mm、16 mm、24 mm)和齿数(1道齿、3道齿和6道齿)为变化参数, 进行了共计68个预紧力齿连接接头拉伸试验。根据荷载-位移曲线、应变及破坏模式的测试结果,分析了各参数变化对复合材料预紧力齿连接接头力学性能的影响。研究结果表明:CFRP预紧力齿连接接头存在4种破坏模式−剪切破坏、压溃破坏、纵向劈裂和纤维拉断;接头荷载-位移曲线有两种特征,荷载在达到极值后突然下降及荷载在达到极值后缓慢下降,前者接头发生剪切或纤维拉断破坏,后者接头发生压溃或劈裂破坏;预紧力多齿接头荷载分配不均匀,发生压溃破坏的接头比发生剪切破坏的接头内力分配更均匀,不管接头发生压溃破坏还是剪切破坏,第一道齿承担的载荷分配比最大,齿数越多,接头的最大载荷分配比越小,当预紧力超过53 MPa时,预紧力变化对接头破坏时第一道齿的影响不明显;当预紧力、齿深和齿长分别小于53 MPa、2 mm和16 mm时,接头连接强度分别随预紧力、齿深和齿长的增加而增加,当预紧力和齿长分别超过53 MPa和16 mm时,接头连接强度变化不大,在6齿范围内,接头连接强度随齿数的增加而增加。

     

  • 图  1  6齿CFRP接头6T-16-2-53

    Figure  1.  CFRP specimen 6T-16-2-53 with six-teeth

    P—External load

    图  2  CFRP复合材料预紧力齿连接荷载传递示意图

    Figure  2.  Schematic diagram of load transfer of CFRP pre-tightened tooth connection

    f—Frictional force; τ—Shear force

    图  3  夹具装置及试验

    Figure  3.  Fixture device and test

    图  4  CFRP复合材料预紧力齿连接接头试验结果

    Figure  4.  Test results of CFRP pre-tightened tooth connection

    R2—Fit coefficient

    图  5  加载装置和应变片布置

    Figure  5.  Loading device and strain gauge arrangement

    图  6  CFRP复合材料预紧力齿连接接头破坏模式

    Figure  6.  Failure modes of CFRP pre-tightened tooth connection

    图  7  CFRP复合材料预紧力齿连接接头破坏模式与齿深和齿长比之间的关系

    Figure  7.  Relationship between the tooth depth/tooth length ratio and failure mode of CFRP pre-tightened tooth connection

    图  8  所有CFRP复合材料预紧力齿连接接头试件的荷载-位移曲线

    Figure  8.  Load-displacement curves of all CFRP pre-tightened tooth connection specimens

    图  9  CFRP复合材料预紧力齿连接接头的荷载分配比随位移变化的曲线

    Figure  9.  Curves of load distribution ratio of CFRP pre-tightened tooth connection changing with displacement

    图  10  CFRP复合材料预紧力齿连接接头承载力随预紧力的变化曲线

    Figure  10.  Variation curve of joint bearing capacity with CFRP pre-tightened tooth connection

    图  11  CFRP复合材料预紧力齿连接接头承载力随齿深的变化

    Figure  11.  Variation curves of CFRP pre-tightened tooth connection bearing capacity with tooth

    图  12  CFRP复合材料预紧力齿连接接头承载力随齿长的变化

    Figure  12.  Variation curves of CFRP pre-tightened tooth connection bearing capacity with tooth length

    图  13  复合材料预紧力齿连接接头承载力随齿数的变化

    Figure  13.  Variation curves of CFRP pre-tightened tooth connection bearing capacity with tooth number

    图  14  CFRP复合材料预紧力齿接头连接强度

    Figure  14.  Connection strength of CFRP pre-tightened tooth connection

    表  1  碳纤维增强树脂复合材料(CFRP)板力学参数

    Table  1.   Mechanical parameters of carbon fiber reinforced polymer (CFRP) plate

    $ {E_a} $/GPa$ {E_b} $/GPa$ {E_c} $/GPa$ {G_{ab}} $/GPa$ {\upsilon _{ab}} $$ {X_{\text{t}}} $/MPa$ {X_{\text{c}}} $/MPa$ {Y_{\text{t}}} $/MPa$ {Y_{\text{c}}} $/MPa$ S_{ab}^{} $/MPa
    108.98.88.830.331480613.46520554
    Notes: a—Fiber direction, whereas b and c are perpendicular to a. For example, ${G_{ab}}$—Shear modulus in the plane ab; ${S_{ab}}$—Shear strength in the plane ab; ${X_{\text{t}}}$ and ${X_{\text{c}}}$—Tensile and compressive strengths, respectively, along the fiber direction; ${Y_{\text{t}}}$ and ${Y_{\text{c}}}$—Tensile and compressive strengths perpendicular to the fiber direction; Ea, Eb, Ec—Elastic modulus in a, b and c directions, respectively; νab—Poisson's ratio in the plane ab.
    下载: 导出CSV

    表  2  Q345钢板力学参数

    Table  2.   Mechanical parameters of Q345 plate

    MaterialYoung’s modulus/GPaYield strength/MPaPoisson’s ratio
    Q3452103450.3
    下载: 导出CSV

    表  3  CFRP预紧力齿连接试件分组

    Table  3.   Grouping of CFRP pre-tightened tooth specimens

    Material typeGroupSerial numberTooth
    depth/mm
    Tooth
    length/mm
    Pre-tightened
    force/MPa
    Torque of
    single bolt/(N·m)
    Number of
    specimens
    CFRP A 6T-16-2-23 2 16 23 10 6
    6T-16-2-34.6 34.6 15
    6T-16-2-53 53 23
    6T-16-2-64.5 64.5 28
    B 1T-8-0.5-53 0.5 8 53 11.1 1
    3T-8-0.5-53 13.5 3
    6T-8-0.5-53 14.6 6
    C 1T-8-1-53 1 11.1 1
    3T-8-1-53 13.5 3
    6T-8-1-53 14.6 6
    D 1T-8-2-53 2 11.1 1
    3T-8-2-53 13.5 3
    6T-8-2-53 14.6 6
    E 1T-16-0.5-53 0.5 16 53 16 1
    3T-16-0.5-53 20.9 3
    6T-16-0.5-53 23 6
    F 1T-16-1-53 1 16 1
    3T-16-1-53 20.9 3
    6T-16-1-53 23 6
    G 1T-16-2-53 2 16 1
    2T-16-2-53 19.3 2
    3T-16-2-53 20.9 3
    4T-16-2-53 21.9 4
    5T-16-2-53 22.5 5
    6T-16-2-53 23 6
    H 1T-24-0.5-53 0.5 24 53 20.9 1
    3T-24-0.5-53 28.3 3
    6T-24-0.5-53 31.4 6
    I 1T-24-1-53 1 20.9 1
    3T-24-1-53 28.3 3
    6T-24-1-53 31.4 6
    J 1T-24-2-53 2 20.9 1
    3T-24-2-53 28.3 3
    6T-24-2-53 31.4 6
    Notes: Serial number nT-L-H-P, where n—Number of teeth; L—Tooth length; H—Tooth depth; P—Preloading force.
    下载: 导出CSV

    表  4  CFRP复合材料预紧力齿连接接头破坏时各个齿的荷载分配比

    Table  4.   Load distribution ratio of each tooth when CFRP pre-tightened tooth connection failure

    Serial
    number
    Tooth
    number
    Failure
    modes
    Load distribution ratio
    1#2#3#4#5#6#
    3T-16-0.5-533Crushing0.3670.3280.305
    3T-16-2-533Shear0.4260.2320.342
    6T-16-2-536Shear0.2010.1980.1910.1700.1380.102
    6T-16-2-64.56Shear0.1980.1200.1960.1720.1710.143
    下载: 导出CSV

    表  5  CFRP复合材料预紧力齿连接接头承载力

    Table  5.   Bearing capacities of CFRP pre-tightened tooth connection

    GroupSerial numberBearing capacity
    P/kN
    Average value of
    bearing capacity Pu/kN
    Connection
    strength σ/MPa
    Failure mode
    A 6T-16-2-23 112.48/130.53 121.51 549.82 Shear
    6T-16-2-34.6 157.6/153.21 155.41 703.21 Shear
    6T-16-2-53 171.6/180.54 176.07 796.70 Shear
    6T-16-2-64.5 174/177.15 175.58 794.48 Shear
    B 1T-8-0.5-53 18.1/19 18.55 83.94 Shear
    3T-8-0.5-53 41.57/45.72 43.65 197.51 Shear
    6T-8-0.5-53 78.72/103.31 91.02 411.86 Shear
    C 1T-8-1-53 19.86/20 19.93 90.18 Shear
    3T-8-1-53 53.47/55 54.24 245.43 Shear
    6T-8-1-53 82.14/102.4 92.27 417.51 Shear
    D 1T-8-2-53 26.49/24 25.25 114.25 Shear
    3T-8-2-53 52.52/60.96 56.74 256.74 Shear
    6T-8-2-53 131.55/130 130.78 591.76 Shear
    E 1T-16-0.5-53 25.99/27.57 26.78 121.18 Crushing
    3T-16-0.5-53 79.11/77.82 78.47 355.07 Crushing, spitting
    6T-16-0.5-53 154.36/166.33 160.35 725.57 Crushing, spitting
    F 1T-16-1-53 34.9/37.05 35.98 162.81 Shear
    3T-16-1-53 98.8/106.18 102.5 463.80 Shear
    6T-16-1-53 172/205.8 188.9 854.75 Shear, fiber broken
    G 1T-16-2-53 43.3/43.95 43.63 197.42 Shear
    2T-16-2-53 79.62/82.44 81.03 366.65 Shear
    3T-16-2-53 99.3/114.08 106.69 482.76 Shear
    4T-16-2-53 140/138.86 139.43 630.90 Shear
    5T-16-2-53 157.85/170.66 164.26 743.26 Shear
    6T-16-2-53 171.6/180.54 176.07 796.70 Shear
    H 1T-24-0.5-53 38.15/39 38.58 174.57 Crushing, spitting
    3T-24-0.5-53 97.85/98 97.93 443.12 Crushing, spitting
    6T-24-0.5-53 158.65/173.3 165.98 751.04 Crushing, fiber broken
    I 1T-24-1-53 41.65/42.9 42.28 191.31 Crushing
    3T-24-1-53 127.98/125 126.49 572.35 Crushing
    6T-24-1-53 186.58/192.06 189.32 856.65 Crushing, fiber broken
    J 1T-24-2-53 42.53/44 43.27 195.79 Shear
    3T-24-2-53 115.25/86 100.62 455.29 Shear
    6T-24-2-53 191/205.16 198.08 896.29 Shear
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] WANG X, PENG Z Q, WU Z S, et al. High-performance composite bridge deck with prestressed basalt fiber-reinforced polymer shell and concrete[J]. Engineering Structures,2019,201:109852. doi: 10.1016/j.engstruct.2019.109852
    [3] 刘路路, 汪昕, 吴智深. 基于构件-节点一体化设计纤维增强复合材料桁架结构节点性能研究[J]. 工业建筑, 2019, 49(9):109-112, 172.

    LIU Lulu, WANG Xin, WU Zhishen, et al. Research on connection performance of FRP truss structure based on integrated performance of member and connection[J]. Industrial Construction,2019,49(9):109-112, 172(in Chinese).
    [4] 徐以扬, 方海, 刘伟庆. 复合材料拉挤型材在桁架桥梁结构中的应用与发展[J]. 世界桥梁, 2010(4):32-34, 38.

    XU Yiyang, FANG Hai, LIU Weiqing. Application and de-velopment of composite pultruded profiles in truss bridge structures[J]. World Bridges,2010(4):32-34, 38(in Chinese).
    [5] 白玉磊, 梅世杰, 张玉峰, 等. 基于刚度的大应变 FRP 约束混凝土模型及其在桥梁抗震加固中的应用[J]. 中国公路学报, 2022, 35(2):115-123. doi: 10.3969/j.issn.1001-7372.2021.01.001

    BAI Yulei, MEI Shijie, ZHANG Yufeng, et al. Stiffness-based design-oriented model for large-rupture-strain (LRS) FRP-confined concrete and its application in seismic analysis of bridge retrofitting[J]. China Journal of Highway and Transport,2022,35(2):115-123(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.01.001
    [6] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [7] TEIXEIRA A, PFEIL M S, BATTISTA R C. Structural evaluation of a GFRP truss girder for a deployable bridge[J]. Composite Structures,2014,110(4):29-38.
    [8] SEDLACEK G, TRUMPF H, CASTRISCHER U. Development of a light-weight emergency bridge[J]. Structural Engineering International,2004,14(4):282-287. doi: 10.2749/101686604777963702
    [9] KOSTOPOULOS V, MARKOPOULOS Y P, VLACHOS D E, et al. Design and construction of a vehicular bridge made of glass/polyester pultruded box beams[J]. Plastics Rubber and Composites,2005,34(4):201-207. doi: 10.1179/174328905X55641
    [10] 冯鹏, 田野, 覃兆平. 纤维增强复合材料拉挤型材桁架桥静动力性能研究[J]. 工业建筑, 2013, 43(6):36-41.

    FENG peng, TIAN Ye, QIN Zhaoping. Static and dynamic behevior of a truss bridge made of pultruded profiles[J]. Industrial Construction,2013,43(6):36-41(in Chinese).
    [11] FANG H, BAI Y, LIU W Q, et al. Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments[J]. Composites Part B: Engineering,2019,164:129-143. doi: 10.1016/j.compositesb.2018.11.047
    [12] ZHANG T, LUO W, XIAO W, et al. Numerical simulation of single-lap adhesive joint of composite laminates[J]. Jour-nal of Reinforced Plastics and Composites,2018,37(8):520-532. doi: 10.1177/0731684418754358
    [13] SHANG X, MARQUES E, CARBAS R, et al. Fracture mechanism of adhesive single-lap joints with composite adherends under quasi-static tension[J]. Composite Structures,2020,251:112639.
    [14] 刘玉擎, 都骜, 辛灏辉, 等. 拉挤GFRP型材层合板螺栓连接试验[J]. 中国公路学报, 2017, 30(6):223-229. doi: 10.3969/j.issn.1001-7372.2017.06.005

    LIU Yuqing, DU Ao, XIN Haohui, et al. Experiment on bolted joints of pultruded GFRP laminates[J]. China Jour-nal of Highway and Transport,2017,30(6):223-229(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.06.005
    [15] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131.

    MAO Zhen'gang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded CFRP composite laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese).
    [16] CHENG X, WANG S, ZHANG J, et al. Effect of damage on failure mode of multi-bolt composite joints using failure envelope method[J]. Composite Structures,2017,160:8-15. doi: 10.1016/j.compstruct.2016.10.042
    [17] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015.

    ZHAO Libin, XU Jifeng. Analytical methods for advanced composite joint structures[M]. Beijing: Beihang University Press, 2015(in Chinese).
    [18] LI J, YAN Y, ZHANG T, et al. Experimental study of adhesively bonded CFRP joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives,2015,57:95-104. doi: 10.1016/j.ijadhadh.2014.11.001
    [19] PALMIERI F L, BELCHER M A, WOHL C J, et al. Laser ablation surface preparation for adhesive bonding of carbon fiber reinforced epoxy composites[J]. International Jour-nal of Adhesion and Adhesives,2016,68:95-101. doi: 10.1016/j.ijadhadh.2016.02.007
    [20] 蒋正文. GFRP桥面板胶接界面力学性能研究[D]. 南京: 东南大学, 2018.

    JIANG Zhengwen. Research of mechanical properties for adhesively bonded joint in gfrp bridge deck[D]. Nanjing: Southeast University, 2018(in Chinese).
    [21] GIANNOPOULOS I K, DORONIDAWES D, KOUROUSIS K I, et al. Effects of bolt torque tightening on the strength and fatigue life of airframe FRP laminate bolted joints[J]. Composites Part B: Engineering,2017,125(12):19-26.
    [22] ROMANOV V S, HEIDARI RARANI M, LESSARD L. A parametric study on static behavior and load sharing of multi-bolt hybrid bonded/bolted composite joints[J]. Compo-sites Part B: Engineering,2021,217:108897. doi: 10.1016/j.compositesb.2021.108897
    [23] ZHAO L B, FANG Z, LIU F R, et al. A modified stiffness method considering effects of hole tensile deformation on bolt load distribution in multi-bolt composite joints[J]. Composite Part B: Engineering,2019,171:264-271. doi: 10.1016/j.compositesb.2019.05.010
    [24] LIU F, LU X, ZHAO L, et al. Investigation of bolt load redistribution and ts effect on failure prediction in double-lap, multi-bolt composite joints[J]. Composite Structures,2018,202(10):397-405.
    [25] LIU F, FANG Z, ZHAO L, et al. A failure-envelope-based method for the probabilistic failure prediction of compo-site multi-bolt double-lap joints[J]. Composites Part B: Engineering,2019,172:593-602. doi: 10.1016/j.compositesb.2019.05.034
    [26] 房子昂, 赵丽滨, 刘丰睿, 等. 碳纤维/树脂复合材料多钉连接钉载系数测试方法[J]. 复合材料学报, 2019, 36(12):2795-2804.

    FANG Ziang, ZHAO Libin, LIU Fengrui, et al. Tesing method of bolt load distribution in carbon fiber/resin compo-site multi-bolt joints[J]. Acta Materiae Compositae Sinica,2019,36(12):2795-2804(in Chinese).
    [27] 龚潇. 碳纤维复合材料机械连接载荷分配均匀化研究[D]. 上海: 上海交通大学, 2015.

    GONG Xiao. Research on the equalization of load distribution of carbon fibre composite bolt joints[D]. Shanghai: Shanghai Jiao Tong University, 2015(in Chinese).
    [28] 赵美英. 复合材料机械连接失效分析及强度影响因素研究[D]. 西安: 西北工业大学, 2006.

    ZHAO Meiying. Study on the failure analysis and strength influencing factors of composite mechanical connec-tions[D]. Xi’an: Northwestern Polytechnical University, 2006(in Chinese).
    [29] 谢宗蕻, 李想, 郭家平, 等. 考虑间隙配合的复合材料钉载分配均匀化方法[J]. 复合材料学报, 2016, 33(4):806-813.

    XIE Zonghong, LI Xiang, GUO Jiaping, et al. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Composite Sinica,2016,33(4):806-813(in Chinese).
    [30] 李想, 谢宗蕻. 复合材料多钉连接钉载分配均匀化的泰勒展开方法[J]. 哈尔滨工业大学学报, 2019, 51(11):108-115. doi: 10.11918/j.issn.0367-6234.201811201

    LI Xiang, XIE Zonghong. A taylor expansion algorithm for the load distribution homogenization of multi-bolt composite joints[J]. Journal of Harbin Institute of Technology,2019,51(11):108-115(in Chinese). doi: 10.11918/j.issn.0367-6234.201811201
    [31] 赵启林, 高一峰, 李飞. 复合材料预紧力齿连接技术研究现状与进展[J]. 玻璃钢/复合材料, 2014(12):52-56.

    ZHAO Qilin, GAO Yifeng, LI Fei. Current research and development of the application of the pre-tightened tooth connection[J]. Fiber Reinforced Plastics/Composites,2014(12):52-56(in Chinese).
    [32] ZHAO Q L, LI F, GAO Y F, et al. Research on the shear failure load of composite pre-tightened tooth connections by the characteristic lengths[J]. Journal of Reinforced Plastics and Composites,2015,34(14):1153-1166. doi: 10.1177/0731684415588935
    [33] ZHANG D D, ZHAO Q L, HUANG Y X, et al. Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system[J]. Composite Structures,2014,108:600-615.
    [34] ZHANG D D, ZHAO Q L, LI F, et al. Torsional behavior of a hybrid FRP-aluminum space truss bridge: Experimental and numerical study[J]. Engineering Structures,2018,157:132-143.
    [35] ZHANG D D, LV Y R, ZHAO Q L, et al. Development of lightweight emergency bridge using GFRP-metal composite plate-truss girder[J]. Engineering Structures,2019,196:109291.
    [36] ZHANG D D, YUAN J X, ZHAO Q L, et al. Static perfor-mance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads[J]. Steel and Composite Structures,2020,35(5):641-657.
    [37] 李飞. 复合材料新型连接技术及在桁架中的应用研究[D]. 南京: 解放军理工大学, 2012.

    LI Fei. Research on new type of pultruded composite connection and application in the truss [D]. Nanjing: PLA University of Science and Technology, 2012(in Chinese).
    [38] LI F, ZHAO Q L, GAO Y F, et al. A prediction method of the failure load and failure mode for composite pre-tightened tooth connections based on the characteristic lengths[J]. Composite Structures,2016,154:684-693. doi: 10.1016/j.compstruct.2016.06.036
    [39] LI F, ZHAO Q L, CHEN H S, et al. Experimental investigation of novel pre-tightened teeth connection technique for composite tube[J]. Steel and Composite Structures,2017,23(2):161-172. doi: 10.12989/scs.2017.23.2.161
    [40] LI F, LIU Z, DUAN J H, et al. Research on failure mode and load distribution pattern of composite pretightened tooth connections under different tooth shapes[J]. Engineering Failure Analysis,2020,118:104801. doi: 10.1016/j.engfailanal.2020.104801
    [41] GAO Y F, LI F, ZHAO Q L, et al. Failure modes and failure mechanisms of single tooth bound to composite pre-tightened tooth connection[J]. Journal of Reinforced Plastics and Composites,2018,37(4):267-283. doi: 10.1177/0731684417741205
    [42] GAO Y F, LI F, ZHAO Q L, et al. Strength prediction of a single tooth bound to composite pre-tightened tooth connection (PTTC) joints based on different failure criteria[J]. KSCE Journal of Civil Engineering,2019,23(8):3547-3559. doi: 10.1007/s12205-019-1988-8
    [43] 高一峰. 基于剪切非线性的复合材料预紧力齿连接强度与失效分析[D]. 南京: 陆军工程大学, 2019.

    GAO Yifeng. Strength and failure analysis of composite pre-tightened teeth connection based on shear nonlinearity[D]. Nanjing: Army Engineering University of PLA, 2019(in Chinese).
    [44] 高建岗. 拉挤型复合材料预紧力齿连接件疲劳失效机理及寿命预测方法研究[D]. 南京: 陆军工程大学, 2020.

    GAO Jiangang. Study on fatigue failure mechanism and life prediction method of pultruded composite pre-tightened teeth connection[D]. Nanjing: Army Engineering University of PLA, 2020(in Chinese).
    [45] 柳锦春, 高建岗, 赵启林, 等. 碳纤维增强树脂基复合材料预紧力单齿接头的静态及疲劳性能试验[J]. 复合材料学报, 2016, 33(10):2215-2222.

    LIU Jinchun, GAO Jiangang, ZHAO Qilin, et al. Tests for static and fatigue performances of carbon fiber reinforced plastics pre-tightened single tooth connector[J]. Acta Materiae Compositae Sinica,2016,33(10):2215-2222(in Chinese).
    [46] LIU J C, GAO J G, ZHAO Q L. Failure modes of CFRP pre-tightened single tooth joints under axial cyclic tensile loading[J]. Construction and Building Materials,2019,222:786-795. doi: 10.1016/j.conbuildmat.2019.06.206
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  957
  • HTML全文浏览量:  459
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-11-05
  • 录用日期:  2021-11-13
  • 网络出版日期:  2021-11-26
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回