留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂复合材料预紧力齿连接试验

高一峰 张冬冬 赵启林 李飞

高一峰, 张冬冬, 赵启林, 等. 碳纤维增强树脂复合材料预紧力齿连接试验[J]. 复合材料学报, 2021, 39(0): 1-13
引用本文: 高一峰, 张冬冬, 赵启林, 等. 碳纤维增强树脂复合材料预紧力齿连接试验[J]. 复合材料学报, 2021, 39(0): 1-13
Yifeng GAO, Dongdong ZHANG, Qilin ZHAO, Fei LI. Experimental study on the pre-tightened tooth connection of carbon fibre reinforced polymer[J]. Acta Materiae Compositae Sinica.
Citation: Yifeng GAO, Dongdong ZHANG, Qilin ZHAO, Fei LI. Experimental study on the pre-tightened tooth connection of carbon fibre reinforced polymer[J]. Acta Materiae Compositae Sinica.

碳纤维增强树脂复合材料预紧力齿连接试验

基金项目: 国家自然科学基金(52008390;51708552);江苏省自然科学基金(BK20170752);香江学者计划(XJ2019042);青年人才托举工程(17-JCJQ-QT-020)
详细信息
    通讯作者:

    张冬冬,博士,副教授, 硕士生导师,研究方向为应急桥梁设计理论与关键技术、复合材料结构与力学 E-mail:zhangdodo1986@sohu.com

  • 中图分类号: TB333

Experimental study on the pre-tightened tooth connection of carbon fibre reinforced polymer

  • 摘要: 为探明桥梁用碳纤维增强树脂复合材料(CFRP)预紧力齿连接破坏模式和承载性能,以预紧力(23 MPa、34.6 MPa、53 MPa、64.5 MPa)、齿深(0.5 mm、1 mm、2 mm)、齿长(8 mm、16 mm、24 mm)和齿数(1道齿、3道齿和6道齿)为变化参数, 进行了共计68个预紧力齿连接接头拉伸试验。根据荷载-位移曲线、应变及破坏模式的测试结果,分析了各参数变化对复合材料预紧力齿连接接头力学性能的影响。研究结果表明:CFRP预紧力齿连接接头存在四种破坏模式—剪切破坏、压溃破坏、纵向劈裂和纤维拉断;接头荷载-位移曲线有两种特征,荷载在达到极值后突然下降以及荷载在达到极值后缓慢下降,前者接头发生剪切或纤维拉断破坏,后者接头发生压溃或劈裂破坏;预紧力多齿接头荷载分配不均匀,发生压溃破坏的接头比发生剪切破坏的接头内力分配更均匀,不管接头发生压溃破坏还是剪切破坏,第一道齿承担的载荷分配比最大,齿数越多,接头的最大载荷分配比越小,当预紧力超过53 MPa时,预紧力变化对接头破坏时第一道齿的影响不明显;当预紧力、齿深和齿长分别在53 MPa、2 mm和16 mm范围内时,接头连接强度分别随预紧力、齿深和齿长的增加而增加,当预紧力和齿长分别超过53 MPa和16 mm时,接头连接强度变化不大,在6齿范围内,接头连接强度随齿数的增加而增加。

     

  • 图  1  6齿CFRP接头6T-16-2-53

    Figure  1.  CFRP specimen 6T-16-2-53 with six-teeth

    图  2  CFRP复合材料预紧力齿连接荷载传递示意图

    Figure  2.  Schematic diagram of load transfer of CFRP pre-tightened tooth connection

    图  3  夹具装置及试验

    Figure  3.  Fixture device and test

    图  4  CFRP复合材料预紧力齿连接接头试验结果

    Figure  4.  Test results of CFRP pre-tightened tooth connection

    图  5  加载装置和应变片布置

    Figure  5.  Loading device and strain gauge arrangement

    图  6  CFRP复合材料预紧力齿连接接头破坏模式

    Figure  6.  Failure modes of CFRP pre-tightened tooth connection

    图  7  CFRP复合材料预紧力齿连接接头破坏模式与齿深和齿长比之间的关系

    Figure  7.  Relationship between the tooth depth / tooth length ratio and failure mode of CFRP pre-tightened tooth connection

    图  8  所有CFRP复合材料预紧力齿连接接头试件的荷载-位移曲线

    Figure  8.  Load-displacement curves of all CFRP pre-tightened tooth connection specimens

    图  9  CFRP复合材料预紧力齿连接接头的荷载分配比随位移变化的曲线

    Figure  9.  Curves of load distribution ratio of CFRP pre-tightened tooth connection changing with displacement

    图  10  CFRP复合材料预紧力齿连接接头承载力随预紧力的变化曲线

    Figure  10.  Variation curve of joint bearing capacity with CFRP pre-tightened tooth connection

    图  11  CFRP复合材料预紧力齿连接接头承载力随齿深的变化

    Figure  11.  Variation curves of CFRP pre-tightened tooth connection bearing capacity with tooth

    图  12  CFRP复合材料预紧力齿连接接头承载力随齿长的变化

    Figure  12.  Variation curves of CFRP pre-tightened tooth connection bearing capacity with tooth length

    图  13  复合材料预紧力齿连接接头承载力随齿数的变化

    Figure  13.  Variation curves of CFRP pre-tightened tooth connection bearing capacity with tooth number

    图  14  CFRP复合材料预紧力齿接头连接强度

    Figure  14.  Connection strength of CFRP pre-tightened tooth connection

    表  1  碳纤维增强树脂复合材料(CFRP)板力学参数

    Table  1.   Mechanical parameters of carbon fiber reinforced polymer (CFRP) plate

    $ {E_a} $/GPa$ {E_b} $/GPa$ {E_c} $/GPa$ {G_{ab}} $/GPa$ {\upsilon _{ab}} $$ {X_{\text{t}}} $/MPa$ {X_{\text{c}}} $/MPa$ {Y_{\text{t}}} $/MPa$ {Y_{\text{c}}} $/MPa$ S_{ab}^{} $/MPa
    108.98.88.830.331480613.46520554
    Notes:a represents the fiber direction, whereas b and c are perpendicular to a. For example, ${G_{ab}}$ is the shear modulus in the plane ab; ${S_{ab}}$ is the shear strength in the plane ab; ${X_{\text{t}}}$ and ${X_{\text{c}}}$ are the tensile and compressive strengths, respectively, along the fiber direction; and ${Y_{\text{t}}}$ and ${Y_{\text{c}}}$ are those perpendicular to the fiber direction.
    下载: 导出CSV

    表  2  Q345钢板力学参数

    Table  2.   Mechanical parameters of Q345 plate

    MaterialYoung’s modulus/GPaYield strength/MPaPoisson’s ratio
    Q3452103450.3
    下载: 导出CSV

    表  3  CFRP预紧力齿连接试件分组

    Table  3.   Grouping of CFRP pre-tightened tooth specimens

    Material
    type
    GroupSerial numberTooth
    depth/mm
    Tooth
    length/mm
    Pre-tightened
    force/MPa
    Torque of
    single bolt/(N·m)
    Number of
    specimens
    CFRPA6T-16-2-2321623106
    6T-16-2-34.634.615
    6T-16-2-535323
    6T-16-2-64.564.528
    B1T-8-0.5-530.585311.11
    3T-8-0.5-5313.53
    6T-8-0.5-5314.66
    C1T-8-1-53111.11
    3T-8-1-5313.53
    6T-8-1-5314.66
    D1T-8-2-53211.11
    3T-8-2-5313.53
    6T-8-2-5314.66
    E1T-16-0.5-530.51653161
    3T-16-0.5-5320.93
    6T-16-0.5-53236
    F1T-16-1-531161
    3T-16-1-5320.93
    6T-16-1-53236
    G1T-16-2-532161
    2T-16-2-5319.32
    3T-16-2-5320.93
    4T-16-2-5321.94
    5T-16-2-5322.55
    6T-16-2-53236
    H1T-24-0.5-530.524520.91
    3T-24-0.5-5328.33
    6T-24-0.5-5331.46
    I1T-24-1-53120.91
    3T-24-1-5328.33
    6T-24-1-5331.46
    J1T-24-2-53220.91
    3T-24-2-5328.33
    6T-24-2-5331.46
    下载: 导出CSV

    表  4  CFRP复合材料预紧力齿连接接头破坏时各个齿的荷载分配比

    Table  4.   Load distribution ratio of each tooth when CFRP pre-tightened tooth connection failure

    Serial
    number
    Tooth
    number
    Failure
    modes
    Load distribution ratio
    1#2#3#4#5#6#
    3T-16-0.5-533Crushing0.3670.3280.305
    3T-16-2-533Shear0.4260.2320.342
    6T-16-2-536Shear0.2010.1980.1910.170.1380.102
    6T-16-2-64.56Shear0.1980.1200.1960.1720.1710.143
    下载: 导出CSV

    表  5  CFRP复合材料预紧力齿连接接头承载力

    Table  5.   Bearing capacities of CFRP pre-tightened tooth connection

    GroupSerial numberBearing capacity P/kNAverage value of
    bearing capacity Pu/kN
    Connection
    strength σ/MPa
    Failure mode
    A6T-16-2-23112.48/130.53121.51549.82Shear
    6T-16-2-34.6157.6/153.21155.41703.21Shear
    6T-16-2-53171.6/180.54176.07796.70Shear
    6T-16-2-64.5174/177.15175.58794.48Shear
    B1T-8-0.5-5318.1/1918.5583.94Shear
    3T-8-0.5-5341.57/45.7243.65197.51Shear
    6T-8-0.5-5378.72/103.3191.02411.86Shear
    C1T-8-1-5319.86/2019.9390.18Shear
    3T-8-1-5353.47/5554.24245.43Shear
    6T-8-1-5382.14/102.492.27417.51Shear
    D1T-8-2-5326.49/2425.25114.25Shear
    3T-8-2-5352.52/60.9656.74256.74Shear
    6T-8-2-53131.55/130130.78591.76Shear
    E1T-16-0.5-5325.99/27.5726.78121.18Crushing
    3T-16-0.5-5379.11/77.8278.47355.07Crushing, spitting
    6T-16-0.5-53154.36/166.33160.35725.57Crushing, spitting
    F1T-16-1-5334.9/37.0535.98162.81Shear
    3T-16-1-5398.8/106.18102.5463.80Shear
    6T-16-1-53172/205.8188.9854.75Shear, fibre broken
    G1T-16-2-5343.3/43.9543.63197.42Shear
    2T-16-2-5379.62/82.4481.03366.65Shear
    3T-16-2-5399.3/114.08106.69482.76Shear
    4T-16-2-53140/138.86139.43630.90Shear
    5T-16-2-53157.85/170.66164.26743.26Shear
    6T-16-2-53171.6/180.54176.07796.70Shear
    H1T-24-0.5-5338.15/3938.58174.57Crushing, spitting
    3T-24-0.5-5397.85/9897.93443.12Crushing, spitting
    6T-24-0.5-53158.65/173.3165.98751.04Crushing, fibre broken
    I1T-24-1-5341.65/42.942.28191.31Crushing
    3T-24-1-53127.98/125126.49572.35Crushing
    6T-24-1-53186.58/192.06189.32856.65Crushing, fibre broken
    J1T-24-2-5342.53/4443.27195.79Shear
    3T-24-2-53115.25/86100.62455.29Shear
    6T-24-2-53191/205.16198.08896.29Shear
    下载: 导出CSV
  • [1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3):24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE lieping, FENG peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006(3):24-36(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [2] WANG X, PENG Z Q, WU Z S, et al. High-performance composite bridge deck with prestressed basalt fiber-reinforced polymer shell and concrete[J]. Engineering Structures,2019,201:109852. doi: 10.1016/j.engstruct.2019.109852
    [3] 刘路路, 汪昕, 吴智深. 基于构件-节点一体化设计纤维增强复合材料桁架结构节点性能研究[J]. 工业建筑, 2019, 49(9):109-112+172.

    LIU Lulu, WANG Xin, WU Zhishen, et al. Research on connection performance of frp truss structure based on integrated performance of member and connection[J]. Industrial Construction,2019,49(9):109-112+172(in Chinese).
    [4] 徐以扬, 方海, 刘伟庆. 复合材料拉挤型材在桁架桥梁结构中的应用与发展[J]. 世界桥梁, 2010(4):32-34+38.

    XU Yiyang, FANG Hai, LIU Weiqing. Application and development of composite pultruded profiles in truss bridge structures[J]. World Bridges,2010(4):32-34+38(in Chinese).
    [5] 白玉磊, 梅世杰, 张玉峰, 等. 基于刚度的大应变 FRP 约束混凝土模型及其在桥梁抗震加固中的应用[J]. 中国公路学报, 2021(1):1-14. doi: 10.3969/j.issn.1001-7372.2021.01.001

    BAI Yulei, MEI Shijie, ZHANG Yufeng, et al. Stiffness-based design-oriented model for large-rupture-strain (lrs) frp-confined concrete and its application in seismic analysis of bridge retrofitting[J]. China Journal of Highway and Transport,2021(1):1-14(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.01.001
    [6] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [7] TEIXEIRA A, PFEIL M S, BATTISTA R C. Structural evaluation of a gfrp truss girder for a deployable bridge[J]. Composite Structures,2014,110(4):29-38.
    [8] SEDLACEK G, TRUMPF H, CASTRISCHER U. Development of a light-weight emergency bridge[J]. Structural Engineering International,2004,14(4):282-287. doi: 10.2749/101686604777963702
    [9] KOSTOPOULOS V, MARKOPOULOS YP, VLACHOS DE, et al. Design and construction of a vehicular bridge made of glass/polyester pultruded box beams[J]. Plastics Rubber and Composites,2005,34(4):201-7. doi: 10.1179/174328905X55641
    [10] 冯鹏, 田野, 覃兆平. 纤维增强复合材料拉挤型材桁架桥静动力性能研究[J]. 工业建筑, 2013, 43(06):36-41.

    FENG peng, TIAN Ye, TAN Zhaoping. Static and dynamic behevior of a truss bridge made of pultruded profiles[J]. Industrial Construction,2013,43(06):36-41(in Chinese).
    [11] FANG H, BAI Y, LIU W Q, et al. Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments[J]. Composites Part B:Engineering,2019,164:129-143. doi: 10.1016/j.compositesb.2018.11.047
    [12] ZHANG T, LUO W, XIAO W, et al. Numerical simulation of single-lap adhesive joint of composite laminates[J]. Journal of Reinforced Plastics and Composites,2018,37(8):520-532. doi: 10.1177/0731684418754358
    [13] SHANG X, MARQUES E, CARBAS R, et al. Fracture mechanism of adhesive single-lap joints with composite adherends under quasi-static tension[J]. Composite Structures,2020:112639.
    [14] 刘玉擎, 都骜, 辛灏辉, 等. 拉挤GFRP型材层合板螺栓连接试验[J]. 中国公路学报, 2017, 30(6):223-229. doi: 10.3969/j.issn.1001-7372.2017.06.005

    LIU Yuqing, DU Ao, XIN Haohui, et al. Experiment on bolted joints of pultruded gfrp laminates[J]. China Journal of Highway and Transport,2017,30(6):223-229(in Chinese). doi: 10.3969/j.issn.1001-7372.2017.06.005
    [15] 毛振刚, 侯玉亮, 李成, 等. 搭接长度和铺层方式对CFRP复合材料层合板胶接结构连接性能和损伤行为的影响[J]. 复合材料学报, 2020, 37(1):121-131.

    MAO Zhengang, HOU Yuliang, LI Cheng, et al. Effect of lap length and stacking sequence on strength and damage behaviors of adhesively bonded cfrp composite laminates[J]. Acta Materiae Compositae Sinica,2020,37(1):121-131(in Chinese).
    [16] CHENG X, WANG S, ZHANG J, et al. Effect of damage on failure mode of multi-bolt composite joints using failure envelope method[J]. Composite Structures,2017,160:8-15. doi: 10.1016/j.compstruct.2016.10.042
    [17] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015.

    ZHAO Libin, XU Jifeng. Xianjin fuhe cailiao lianjie jiegou fengxi fangfa. Beihang University Press, 2015(in Chinese).
    [18] LI J, YAN Y, ZHANG T, et al. Experimental study of adhesively bonded cfrp joints subjected to tensile loads[J]. International Journal of Adhesion and Adhesives,2015,57:95-104. doi: 10.1016/j.ijadhadh.2014.11.001
    [19] PALMIERI F L, BELCHER M A, WOHL C J, et al. Laser ablation surface preparation for adhesive bonding of carbon fiber reinforced epoxy composites[J]. International Journal of Adhesion and Adhesives,2016,68:95-101. doi: 10.1016/j.ijadhadh.2016.02.007
    [20] 蒋正文. GFRP桥面板胶接界面力学性能研究[D]. 南京: 东南大学, 2018.

    JIANG Zhengwen. Research of mechanical properties for adhesively bonded joint in gfrp bridge deck[D]. Nanjing: Southeast University, 2018(in Chinese).
    [21] GIANNOPOULOS I K, DORONIDAWES D, KOUROUSIS K I, et al. Effects of bolt torque tightening on the strength and fatigue life of airframe frp laminate bolted joints[J]. Composites Part B Engineering,2017,125(12):19-26.
    [22] ROMANOV V S, HEIDARI RARANI M, LESSARD L. A parametric study on static behavior and load sharing of multi-bolt hybrid bonded/bolted composite joints[J]. Composites Part B:Engineering,2021,217:108897. doi: 10.1016/j.compositesb.2021.108897
    [23] ZHAO L B, FANG Z, LIU F R, et al. A modified stiffness method considering effects of hole tensile deformation on bolt load distribution in multi-bolt composite joints[J]. Composite Part B:Engineering,2019,171:264-271. doi: 10.1016/j.compositesb.2019.05.010
    [24] LIU F, LU X, ZHAO L, et al. Investigation of bolt load redistribution and ts effect on failure prediction in double-lap, multi-bolt composite joints[J]. Composite Structures,2018,202(10):397-405.
    [25] LIU F, FANG Z, ZHAO L, et al. A failure-envelope-based method for the probabilistic failure prediction of composite multi-bolt double-lap joints[J]. Composites Part B:Engineering,2019,172:593-602. doi: 10.1016/j.compositesb.2019.05.034
    [26] 房子昂, 赵丽滨, 刘丰睿, 等. 碳纤维/树脂复合材料多钉连接钉载系数测试方法[J]. 复合材料学报, 2019, 36(12):2795-2804.

    FANG Zianng, ZHAO Libin, LIU Fengrui, et al. Tesing method of bolt load distribution in carbon fiber/resin composite multi-bolt joints[J]. Acta Materiae Compositae Sinica,2019,36(12):2795-2804(in Chinese).
    [27] 龚潇. 碳纤维复合材料机械连接载荷分配均匀化研究[D]. 上海: 上海交通大学, 2015.

    GONG Xiao. Research on the equalization of load distribution of carbon fibre composite bolt joints[D]. Shanghai: Shang Hai Jiao Tong University, 2015(in Chinese).
    [28] 赵美英. 复合材料机械连接失效分析及强度影响因素研究[D]. 西安: 西北工业大学, 2006.

    ZHAO Meiying. Study on the failure analysis and strength influencing factors of composite mechanical connections[D]. Xi’an: Northwestern Polytechnical University, 2006(in Chinese).
    [29] 谢宗蕻, 李想, 郭家平, 等. 考虑间隙配合的复合材料钉载分配均匀化方法[J]. 复合材料学报, 2016, 33(4):806-813.

    XIE Zonghong, LI Xiang, GUO Jia-ping, et al. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Composite Sinica,2016,33(4):806-813(in Chinese).
    [30] 李想, 谢宗蕻. 复合材料多钉连接钉载分配均匀化的泰勒展开方法[J]. 哈尔滨工业大学学报, 2019, 51(11):108-115. doi: 10.11918/j.issn.0367-6234.201811201

    LI Xiang, XIE Zonghong. A taylor expansion algorithm for the load distribution homogenization of multi-bolt composite joints[J]. Journal of Harbin Institute of Technology,2019,51(11):108-115(in Chinese). doi: 10.11918/j.issn.0367-6234.201811201
    [31] 赵启林, 高一峰, 李飞. 复合材料预紧力齿连接技术研究现状与进展[J]. 玻璃钢/复合材料, 2014(12):52-56.

    ZHAO Qilin, GAO Yifeng, LI Fei. Current research and development of the application of the pre-tightened tooth connection[J]. Fiber Reinforced Plastics/Composites,2014(12):52-56(in Chinese).
    [32] ZHAO Q L, LI F, GAO Y F, et al. Research on the shear failure load of composite pre-tightened tooth connections by the characteristic lengths[J]. Journal of Reinforced Plastics and Composites,2015,34(14):1153-66. doi: 10.1177/0731684415588935
    [33] ZHANG D D, ZHAO Q L, HUANG Y X, et al. Flexural properties of a lightweight hybrid frp-aluminum modular space truss bridge system[J]. Composite Structures,2014,108(108):600-615.
    [34] ZHANG D D, ZHAO Q L, LI F, et al. Torsional behavior of a hybrid frp-aluminum space truss bridge: experimental and numerical study[J]. Engineering Structures,2018,157(157):132-143.
    [35] ZHANG D D, LV Y R, ZHAO Q L, et al. Development of lightweight emergency bridge using gfrp–metal composite plate-truss girder[J]. Engineering Structures,2019,196(196):109291.
    [36] ZHANG D D, YUAN J X, ZHAO Q L, et al. Static performance of a new gfrp-metal string truss bridge subjected to unsymmetrical loads[J]. Steel and Composite Structures,2020,35(05):641-657.
    [37] 李飞. 复合材料新型连接技术及在桁架中的应用研究[D]. 南京: 解放军理工大学, 2012.

    LI Fei. Research on new type of pultruded composite connection and application in the truss [D]. Nanjing: PLA University of Science and Technology, 2012(in Chinese).
    [38] LI F, ZHAO Q L, GAO Y F, et al. A prediction method of the failure load and failure mode for composite pre-tightened tooth connections based on the characteristic lengths[J]. Composite Structures,2016,154:684-93. doi: 10.1016/j.compstruct.2016.06.036
    [39] LI F, ZHAO Q L, CHEN H S, et al. Experimental investigation of novel pre-tightened teeth connection technique for composite tube[J]. Steel and Composite Structures,2017,23(2):161-72. doi: 10.12989/scs.2017.23.2.161
    [40] LI F, LIU Z, DUAN J H, et al. Research on failure mode and load distribution pattern of composite pretightened tooth connections under different tooth shapes[J]. Engineering Failure Analysis,2020,118:104801. doi: 10.1016/j.engfailanal.2020.104801
    [41] GAO Y F, LI F, ZHAO Q L, et al. Failure modes and failure mechanisms of single tooth bound to composite pre-tightened tooth connection[J]. Journal of Reinforced Plastics and Composites,2018,37(4):267-83. doi: 10.1177/0731684417741205
    [42] GAO Y F, LI F, ZHAO Q L, et al. Strength prediction of a single tooth bound to composite pre-tightened tooth connection (pttc) joints based on different failure criteria[J]. KSCE Journal of Civil Engineering,2019,23(8):3547-59. doi: 10.1007/s12205-019-1988-8
    [43] 高一峰. 基于剪切非线性的复合材料预紧力齿连接强度与失效分析[D]. 南京: 陆军工程大学, 2019.

    GAO Yifeng. Strength and failure analysis of composite pre-tightened teeth connection based on shear nonlinearity[D]. Nanjing: Army Engineering University of PLA, 2019(in Chinese).
    [44] 高建岗. 拉挤型复合材料预紧力齿连接件疲劳失效机理及寿命预测方法研究[D]. 南京: 陆军工程大学, 2020.

    GAO Jiangang. Study on fatigue failure mechanism and life prediction method of pultruded composite pre-tightened teeth connection[D]. Nanjing: Army Engineering University of PLA, 2020(in Chinese).
    [45] 柳锦春, 高建岗, 赵启林, 等. 碳纤维增强树脂基复合材料预紧力单齿接头的静态及疲劳性能试验[J]. 复合材料学报, 2016, 33(10):2215-2222.

    LIU Jinchun, GAO Jiangang, ZHAO Qilin, et al. Tests for static and fatigue performances of carbon fiber reinforced plastics pre-tightened single tooth connector[J]. Acta Materiae Compositae Sinica,2016,33(10):2215-2222(in Chinese).
    [46] LIU J C, GAO J G, ZHAO Q L. Failure modes of cfrp pre-tightened single tooth joints under axial cyclic tensile loading[J]. Construction and Building Materials,2019,222:786-95. doi: 10.1016/j.conbuildmat.2019.06.206
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 录用日期:  2021-11-13
  • 修回日期:  2021-11-05
  • 网络出版日期:  2021-12-11

目录

    /

    返回文章
    返回