留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/正十八烷复合相变材料在Cu纳米表面的分子动力学模拟

周艳 王万权 张树坤 李慧芳 何燕

周艳, 王万权, 张树坤, 等. 石墨烯/正十八烷复合相变材料在Cu纳米表面的分子动力学模拟[J]. 复合材料学报, 2022, 39(8): 3757-3766. doi: 10.13801/j.cnki.fhclxb.20210913.002
引用本文: 周艳, 王万权, 张树坤, 等. 石墨烯/正十八烷复合相变材料在Cu纳米表面的分子动力学模拟[J]. 复合材料学报, 2022, 39(8): 3757-3766. doi: 10.13801/j.cnki.fhclxb.20210913.002
ZHOU Yan, WANG Wanquan, ZHANG Shukun, et al. Molecular dynamics simulation of graphene/n-octadecane composite phase change material on Cu nano-surface[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3757-3766. doi: 10.13801/j.cnki.fhclxb.20210913.002
Citation: ZHOU Yan, WANG Wanquan, ZHANG Shukun, et al. Molecular dynamics simulation of graphene/n-octadecane composite phase change material on Cu nano-surface[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3757-3766. doi: 10.13801/j.cnki.fhclxb.20210913.002

石墨烯/正十八烷复合相变材料在Cu纳米表面的分子动力学模拟

doi: 10.13801/j.cnki.fhclxb.20210913.002
基金项目: 国家自然科学基金(21403037;51676103);山东省自然科学基金(ZR201910220069);山东省泰山学者项目(ts20190937)
详细信息
    通讯作者:

    周艳,博士,副教授,硕士生导师,研究方向为新能源开发利用  E-mail: zhouyanqd@163.com

  • 中图分类号: TB332

Molecular dynamics simulation of graphene/n-octadecane composite phase change material on Cu nano-surface

  • 摘要: 为了探究提高石蜡基相变材料热物理性能的途径与机制,通过引入Cu纳米表面建立了Cu纳米表面-无定型正十八烷复合体系以及Cu纳米表面-石墨烯/正十八烷复合体系,并采用分子动力学模拟的方法对两复合体系进行了模拟分析。结果表明,在体系中添加金属纳米颗粒来提高相变材料的热物理性能的微观机制在于不仅其本身具有极高的导热系数,而且金属纳米表面与烷烃分子的相互作用促使了烷烃分子在纳米表面的定向结晶。石墨烯作为一种性能优良的高导热碳纳米材料,可以进一步促进复合体系中烷烃分子的定向结晶,进而提高整个体系中复合相变材料的导热性能。

     

  • 图  1  纳米Cu(100)的表面结构

    Figure  1.  Surface structure of nano Cu(100)

    图  2  两体系模型建立与优化过程

    Figure  2.  Modeling and optimization process of the two systems

    图  3  两体系几何优化过程中的能量涨落

    Figure  3.  Energy fluctuation in the process of geometric optimization of the two systems

    图  4  不同温度下两体系中正十八烷的均方位移

    Figure  4.  Mean square displacement curves of n-octadecane molecules at different temperatures in the two systems

    图  5  不同温度下两体系中正十八烷的自扩散系数

    Figure  5.  Self-diffusion coefficients of n-octadecane molecules at different temperatures in the two systems

    图  6  两体系的势能构成随温度的变化

    Figure  6.  Variation of the potential energy composition with temperature of the two systems

    图  7  280 K下两体系的结构演变

    Figure  7.  Structural evolution of the two systems under 280 K

    图  8  两体系随温度变化的结构演变

    Figure  8.  Structural evolution of the two systems with different temperature

    图  9  两体系垂直纳米Cu(100)表面方向上的正十八烷的相对浓度

    Figure  9.  Relative concentration of n-octadecane in the direction perpendicular to the surface of nano Cu (100) in the two systems

    图  10  不同温度下两体系中烷烃分子链与Cu表面的空间取向相关函数

    Figure  10.  Spatial orientation correlation function of alkane chain and Cu surface in the two systems at different temperatures

    表  1  各复合体系的结构参数

    Table  1.   Structural parameters of each composite system

    SystemAtomsNn-octadecaneNgrapheneDensity/(g·cm−3)Tvacuum/nm
    Cu(100) 720
    System A 3688 53 0 1.149 5
    System B 2684 45 164 1.176 5
    Notes:Nn-octadecane—Number of n-octadecane molecules; Ngraphene—Number of graphene atoms; Tvacuum—Thickness of vacuum layer.
    下载: 导出CSV
  • [1] ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews,2011,15(8):3813-3832. doi: 10.1016/j.rser.2011.07.019
    [2] 张仁元 . 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009.

    ZHANG Renyuan. Phase change materials and phase change energy storage technology[M]. Beijing: Science Press, 2009.
    [3] ANISUR M R, MAHFUZ M H, KIBRIA M A, et al. Curbing global warming with phase change materials for energy storage[J]. Renewable and Sustainable Energy Reviews,2013,18:23-30. doi: 10.1016/j.rser.2012.10.014
    [4] REDDY K S, MUDGAL V, MALLICK T K. Review of latent heat thermal energy storage for improved material stabi-lity and effective load management[J]. The Journal of Energy Storage,2018,15:205-227. doi: 10.1016/j.est.2017.11.005
    [5] QURESHI Z A, ALI H M, KHUSHNOOD S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review[J]. International Journal of Heat and Mass Transfer,2018(127):838-856.
    [6] RAO Z H, WANG S F, PENG F F. Self diffusion and heat capacity of n-alkanes based phase change materials: A molecular dynamics study[J]. International Journal of Heat and Mass Transfer,2013,64:581-589. doi: 10.1016/j.ijheatmasstransfer.2013.05.017
    [7] CHENG W L, LI W W, NIAN Y L, et al. Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials[J]. International Journal of Heat and Mass Transfer,2018,116:507-511. doi: 10.1016/j.ijheatmasstransfer.2017.09.032
    [8] SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon,2013,51:365-372.
    [9] WU S Y, WANG H, XIAO S, et al. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials[J]. Journal of Thermal Analysis and Calorimetry,2012,110(3):1127-1131. doi: 10.1007/s10973-011-2080-x
    [10] ÁGUILA V B, VASCO D A, GALVEZ P P, et al. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material[J]. International Journal of Heat and Mass Transfer,2018,120:1009-1019. doi: 10.1016/j.ijheatmasstransfer.2017.12.106
    [11] AL-KAYIEM H H, LIN S C. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations[J]. Solar Energy,2014,109(1):82-92.
    [12] HUANG Y R, CHUANG P H, CHEN C L. Molecular-dyna-mics calculation of the thermal conduction in phase change materials of graphene paraffin nanocomposites[J]. International Journal of Heat and Mass Transfer,2015,91:45-51. doi: 10.1016/j.ijheatmasstransfer.2015.07.110
    [13] LI Q, YU Y, LIU Y, et al. Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: A molecular dynamics study[J]. Materials,2017,10(1):38. doi: 10.3390/ma10010038
    [14] BABAEI H, KEBLINSKI P, KHODADADI J M. Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene[J]. International Journal of Heat and Mass Transfer,2013,58(1-2):209-216. doi: 10.1016/j.ijheatmasstransfer.2012.11.013
    [15] ZHANG S K, ZHOU Y, LI H F, et al. Microstructure and thermproperties of n-octadecane during phase transion: A molecular dynamics simulation[J]. Journal of Ovonic Research,2021,17(1):1-10.
    [16] SRINIVASA R S, ANANTHARAMAN T R. Accurate evaluation of lattice parameters of α-brasses[J]. Current Science,1963,32:262-263.
    [17] NOSE S. A unified formulation of the constant tempera-ture molecular dynamics methods[J]. The Journal of Chemical Physics,1984,81(1):511-519. doi: 10.1063/1.447334
    [18] SUN H J. COMPASS: An AB initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. The Journal of Physi-cal Chemistry B,1998,102(38):7338-7364. doi: 10.1021/jp980939v
    [19] RAO Z H, WANG S F, PENG F F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer,2013,66:575-584. doi: 10.1016/j.ijheatmasstransfer.2013.07.065
    [20] LIU X J, RAO Z H. Thermal diffusion and phase transition of n-octadecane as thermal energy storage material on nanoscale copper surface: A molecular dynamics study[J]. Journal of the Energy Institute,2019,92(1):161-176. doi: 10.1016/j.joei.2017.10.011
    [21] TAO C G, FENG H J, JIAN Z, et al. Molecular simulation of oxygen adsorption and diffusion in polypropylene[J]. Acta Physico-Chimica Sinica,2009,25(7):1373-1378. doi: 10.3866/PKU.WHXB20090719
    [22] CUI Y B, LIU C H, SHAN H, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials and Solar Cells,2011,95(4):1208-1212. doi: 10.1016/j.solmat.2011.01.021
    [23] LIN C P, RAO Z H. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study[J]. Applied Thermal Engineering,2017,110:1411-1419. doi: 10.1016/j.applthermaleng.2016.09.065
    [24] FUJIWARA S, SATO T. Molecular dynamics simulations of structural formation of a single polymer chain: Bond-orientational order and conformational defects[J]. Journal of Chemical Physics,1997,107(2):613-622. doi: 10.1063/1.474421
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  583
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-08-18
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-09-14
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回