留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

防覆/除冰功能复合材料的制备和应用研究进展

邓朝辉 金汝诗 戚栋明 刘国金 翟世民

邓朝辉, 金汝诗, 戚栋明, 等. 防覆/除冰功能复合材料的制备和应用研究进展[J]. 复合材料学报, 2023, 41(0): 1-13
引用本文: 邓朝辉, 金汝诗, 戚栋明, 等. 防覆/除冰功能复合材料的制备和应用研究进展[J]. 复合材料学报, 2023, 41(0): 1-13
Chaohui DENG, Rushi JIN, Dongming QI, Guojin LIU, Shimin ZHAI. Preparation of anti-icing/deicing functional composite materials and its research progress[J]. Acta Materiae Compositae Sinica.
Citation: Chaohui DENG, Rushi JIN, Dongming QI, Guojin LIU, Shimin ZHAI. Preparation of anti-icing/deicing functional composite materials and its research progress[J]. Acta Materiae Compositae Sinica.

防覆/除冰功能复合材料的制备和应用研究进展

基金项目: 浙江理工大学科研启动项目(22202008-Y);浙江理工大学优博专项(11150131721905);浙江省现代纺织技术创新中心定向项目(CXZX2022011HD)
详细信息
    通讯作者:

    翟世民,博士,硕士生导师,研究方向为功能性材料制备 E-mail:zsm021616@163.com

  • 中图分类号: TQ325

Preparation of anti-icing/deicing functional composite materials and its research progress

Funds: Zhejiang Sci-Tech University research start-up project(22202008-Y); Zhejiang Sci-Tech University Excellent doctoral program(11150131721905); Zhejiang Modern Textile Technology Innovation Center Orientation Project (CXZX2022011HD)
  • 摘要:   目的  为了解防覆/除冰涂层的制备过程,提升现有纺织复合材料的防覆/除冰性能,并且为了耦合不同涂层整理的技术优势,开发柔性、复合协同型防覆/除冰功能纺织材料的这一设想,能够提供可借鉴的研究思路,解决现有防覆/除冰材料作用机理单一、耐候性欠佳、形状可塑性差和不易拆卸等关键性问题。  方法  本文以防覆/除冰机理为切入点,系统介绍了超疏水、超润滑和复合型涂层整理等的结构、性能和影响因素,并从纺织复合材料涂层整理的技术特点出发,总结了纺织复合材料在防覆/除冰功能整理方面的最新研究进展。  结果  现有的被动防/除冰技术主要有超疏水表面涂层技术、超润滑表面涂层技术和光热超疏水涂层技术及复合型涂层技术,分为如下几种机理:ϕ超疏水型材料的防覆/除冰机制:表面为超疏水状态时,液滴呈球体水珠状,水滴极易滚落脱离,水滴在凝固之前迅速流走,就可以有效避免结冰现象的发生。可以分为三个阶段:结冰之前的防冰、结冰过程中对结冰速度的延缓和结冰后冰层的自行脱落。κ超润滑表面的防冰机制可以简单概括为防止液滴凝结和降低结冰粘附力两个方面。其防疏冰方式与超疏水表面的拒水防冰机理类似,所不同的是,超润滑整理是将具有低表面能的润滑剂覆盖固体基材形成薄膜,将冰与固体完全隔离,以达到防覆除冰效果。λ复合型防覆/除冰材料,如:光热超疏水表面防冰、电热超疏水表面防冰和光-电-超疏水一体防覆/除冰材料等,能够提高材料应用的稳定性和高效性。光热超疏水防覆/除冰材料通常是以微纳米级的光热材料制备粗糙表面,同时赋予材料表面超疏水性和光热性能。在无太阳光照的长时间下,光热效应很难发生作用。电热超疏水表面可降低损耗,可有效去除表面的结冰。μ纺织材料具有柔韧性、轻质性和出色的加工性,可以实现物体表面的柔软包覆,解决传统材料形状可塑性差和不易拆卸等问题;织物表面丰富的多孔结构和高表面能,便于对功能性组分进行吸纳和缓释,纺织材料在防覆/除冰技术领域的应用和研究受到关注。  结论  鉴于极端天气下冰雪积聚对电缆、铁轨、航天等方面的威胁,开发新型防覆/除冰涂层十分必要,本文以防覆除冰材料的制备和机理出发,论述了国内外的最新研究成果,对纺织复合材料的防/除冰机理作了总结,针对现有防覆/除冰材料作用机理单一、耐候性差和不易拆卸等问题,提出了耦合不同涂层整理的技术优势,开发柔性、复合协同型防覆/除冰功能纺织材料的设想,促进防覆/除冰功能纺织复合材料的研究和发展,但目前防覆/除冰纺织复合材料仍存在以下问题:(1)制备工艺复杂、成本高,难以在实际生产中大规模应用;(2)防覆/除冰纺织复合材料的耐候性差,其耐磨,抗拉伸和弯曲,耐腐蚀等性能仍有待提高;(3)常用的超疏水整理剂对人和环境存在安全隐患,开发绿色环保的超疏水涂层整理技术是未来发展的方向。

     

  • 图  1  超疏水表面及水在表面的弹离 [21]

    Figure  1.  Superhydrophobic surface and water ejectio on the surface[21]

    图  2  液滴在超疏水表面滚动 [30]

    Figure  2.  Droplet rolling on superhydrophobic surface[30]

    图  3  滚转角与倾角滞后关系示意图 [34]

    Figure  3.  Relation between roll Angle and dip Angle lag[34]

    α—Rolling angle θa—Forward contact angle θr—Receding contact angle

    图  4  液滴在超疏水表面示意图 [33]

    Figure  4.  Schematic diagram of droplet on superhydrophobic surface[33]

    图  5  超疏水表面的防覆/除冰机制[32]

    Figure  5.  Anti-coating/deicing mechanism of superhydrophobic surface[32]

    图  6  超润滑表面除冰示意图 [33]

    Figure  6.  Schematic diagram of de-icing of super-lubricated surface[33]

    图  7  碳基材料光热转换的基本原理 [58]

    Figure  7.  Basic principle of photothermal conversion of carbon-based materials[58]

  • [1] 彭慧璇, 兰金鑫, 杨海涛, 等. 基于光热效应的主动抗冰涂层的制备及其性能研究[J]. 中国涂料, 2022, 37(4):3136+48.

    PENG Huixuan, LAN Jinxin, YANG Haitao, et al. Preparation and properties of active anti-ice coatings based on photothermal effect[J]. China Coatings,2022,37(4):3136+48(in Chinese).
    [2] 霍治国, 李春晖, 孔瑞, 等. 中国电线积冰灾害研究进展[J]. 应用气象学报, 2021, 32(5):513-529.

    HUO Zhiguo, LI Chunhui, KONG Rui, et al. Review on disaster of wire icing in Chian[J]. Journal of Applied Meteorology,2021,32(5):513-529(in Chinese).
    [3] 陈梁. 可光热除冰的微纳超疏水防冰表面的制备及其性能研究[D]. 华南理工大学, 2019.

    CHEN Liang. Preparation and properties of micro-nano superhydrophobic and anti-ice surface capable of photothermal deicing[D]. South China University of Technology, 2019(in Chinese).
    [4] 韩佳, 勾昱君, 李怡达, 等. 具有光热效应的超疏水表面防覆冰研究[J]. 制冷, 2022, 41(1):13-18.

    HAN Jia, GOU Yujun, LI Yida, et al. Anti-icing of superhydrophobic surface with photothermal effect[J]. Journal of Refrigeration,2022,41(1):13-18(in Chinese).
    [5] 席乃园. 耐候钢表面超疏水涂层制备技术及其防覆冰性能研究[D]. 西南交通大学, 2019.

    XI Naiyuan. Study on preparation technology and anti-icing properties of superhydrophobic coatings on weathering steel[D]. Southwest Jiaotong University, 2019(in Chinese).
    [6] LI Xin, HU Kang, HUANG Yizhe, et al. Upcycling biomass waste into Fe single atom catalysts for pollutant control[J]. Journal of Energy Chemistry,2022,69:282-291. doi: 10.1016/j.jechem.2022.01.044
    [7] 马维, 李洋, 姚舒怀, 等. 光热防冰防霜防雾表面近期研究进展[J]. 物理学报, 2022, 71(8):11.

    MA Wei, LI Yang, YAO Shuhuai, et al. Recent advance in solar-thermal surfaces for anti-icing/anti-frosting/anti-fogging[J]. Acta Physica Sinica,2022,71(8):11(in Chinese).
    [8] 李回归. 光热超疏水涂层的制备及性能研究[D]. 陕西科技大学, 2021.

    LI Huigui. Fabrication and properties of superhydrophobic photothermal coating[D]. Shaanxi University of Science and Technology, 2021(in Chinese).
    [9] 梁镇宇, 张世忠, 张宏强, 等. 聚吡咯光热超疏水多功能防冰涂层的制备与性能研究[J]. 涂料工业, 2022, 52(4):6. doi: 10.12020/j.issn.0253-4312.2022.4.6

    LIANG Zhenyu, ZHANG Shizhong, ZHONG Hongqiang, et al. Preparation and research of polypyrrole photothermal superhydrophobic multi-function anti-icing coatings[J]. Coating Industry,2022,52(4):6(in Chinese). doi: 10.12020/j.issn.0253-4312.2022.4.6
    [10] 唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J/OL][J]. 航空学报, 2022, 10:1-10.

    TANG Chao, XIE Wenjun, YUAN Peiyu. Development and verification of Functional Structure of Wing Front Edge Conformal Electrothermal Deicing [J/OL][J]. Acta Aeronautica et Astronautica Sinica,2022,10:1-10(in Chinese).
    [11] 王志航, 白二雷, 严平, 等. 磁铁矿骨料混凝土的微波除冰特性及耐久性[J/OL]. 复合材料学报, 2022, 11: 1-14.

    WANG Zhihang, BAI Erlei, YAN Ping, Microwave deicing characteristics and durability of magnetite aggregate concrete[J/OL]. Journal of Composite Materials, 2022, 11: 1-14(in Chinese).
    [12] 叶高呈, 邹德华, 邝江华, 等. 基于移动机载平台的输电线绝缘子激光除冰机构设计[J]. 武汉纺织大学学报, 2022, 35(4):33-37.

    YE Gaocheng, ZOU Dehua, KUANG Jianghua, et al. Design of laser deicing mechanism for transmission line insulators based on mobile airborne platform[J]. Journal of Wuhan Textile University,2022,35(4):33-37(in Chinese).
    [13] 卿汶松. 除冰液作用下机场道面混凝土冻融破坏行为研究[D]. 西南科技大学, 2022.

    QIN Wensong. Research on Freeze-thaw failure behavior of air-port pavement concrete under the action of deicing fluid[D]. Southwest University of Science and Technology, 2022(in Chinese).
    [14] ZHANG Lei, GAO Chunlei, ZHONG Lieshuang, et al. Robust photothermal superhydrophobic coatings with dual-size micro/nano structure enhance anti-/de-icing and chemical resistance properties[J]. Chemical Engineering Journal,2022,446:137461. doi: 10.1016/j.cej.2022.137461
    [15] LIU Zhongyang, HU Jinhuan, JIANG Guo. Superhydrophobic and photothermal deicing composite coating with self-healing and anti-corrosion for anti-icing applications[J]. Surface and Coatings Technology,2022,444:128668. doi: 10.1016/j.surfcoat.2022.128668
    [16] 朱军, 黄汉雄. 注压成型聚丙烯/碳纳米管材料表面的纳米结构和光热除冰/除霜[J]. 高分子学报, 2021, 52(11):1506-1513. doi: 10.11777/j.issn1000-3304.2021.21093

    ZHU Jun, HUANG Hanxiong. Nanohairs and Photothermal deicing/defrosting on surface of injection-compression molded PP/MWCNTs composite[J]. Acta Polymerica Sinica,2021,52(11):1506-1513(in Chinese). doi: 10.11777/j.issn1000-3304.2021.21093
    [17] 沈一洲, 谢欣瑜, 陶杰, 等. 超疏水防冰材料的理论基础与应用研究进展[J]. 中国材料进展, 2022, 41(5):388-397.

    SHEN Yizhou, XIE Xinyu, TAO Jie. Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J]. Materials Progress in China,2022,41(5):388-397(in Chinese).
    [18] GOLOVIN K, DHYANI A, THOULESS M. D., et al. Low–interfacial toughness materials for effective large-scale deicing[J]. Science,2019,364(6438):371-375. doi: 10.1126/science.aav1266
    [19] 徐玉坤, 朱宝, 孙林峰, 等. 超疏水和超润滑防冰表面的制备技术概述[J]. 航空制造技术, 2017(14):44-48. doi: 10.16080/j.issn1671-833x.2017.14.044

    XU YUkun, ZHU Bao, SUN Linfeng, et al. Preparation of superhydrophobic and SLIPS anti-icing surfaces[J]. Aeronautical Manufacturing Technology,2017(14):44-48(in Chinese). doi: 10.16080/j.issn1671-833x.2017.14.044
    [20] WU Shuwang, DU Yingjie, ALSAID YOUSIF, et al. Superhydrophobic photothermal icephobic surfaces based on candle soot[J]. Proceedings of the National Academy of Sciences,2020,117(21):11240-11246. doi: 10.1073/pnas.2001972117
    [21] LI Yong, LI Hao, WU Jun, et al. One-pot synthesis of superhydrophobic photothermal materials with self-healing for efficient ice removal[J]. Applied Surface Science,2022,600:154177.
    [22] 张志. 纺织基柔性可穿戴纳米发电机的制备及性能研究[D]. 东华大学, 2020.

    ZHANG Zhi. Preparation and performance analysis of flexible and wearable textile based nanogenerator[D]. Donghua University, 2020(in Chinese).
    [23] 郑奇凯, 孙阔腾, 黄松强, 等. 防冰涂层材料及电力材料防覆冰应用的研究进展[J]. 表面技术, 2021, 50(12):282-293. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.027

    ZHENG Qikai, SUN Kuoteng, HHANG Songqiang, et al. Research progress of anti-icing coating materials and its applications in the protection of power materials[J]. Surface Technology,2021,50(12):282-293(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2021.12.027
    [24] 韩伦. 织物拒冰性能研究[D]. 天津工业大学, 2020.

    HAN Lun. Research on ice repellent properties of Fabric [D]. Tianjin Polytechnic University, 2020(in Chinese).
    [25] NGUYEN H. H., TIEU A. K., WAN S., et al. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser[J]. Applied Surface Science,2021,537:147808. doi: 10.1016/j.apsusc.2020.147808
    [26] CHOWDHURY I. U. , Mahapatra P. S. , SEN A. K. . Shape evolution of drops on surfaces of different wettability gradients[J]. Chemical Engineering Science 2021, 229: 116136.
    [27] LIU Mingjie, WANG Shutao, LEI Jiang. Nature-inspired superwettability systems[J]. Nat. Rev. Mater.,2017,2:1-17.
    [28] LEE H. J. Design and development of anti-icing textile surfaces[J]. Journal of Materials Science,2012,47(13):5114-5120. doi: 10.1007/s10853-012-6386-2
    [29] 廖晨晨. 生物基超疏水型高性能纺织物的构筑及性能研究[D]. 长春工业大学, 2022.

    LIAO ChenChen. Fabrication and investigation of bio-based and superhydrophobic textiles with high performance[D]. Changchun University of Technology, 2022(in Chinese).
    [30] ELZAABALAWY ASSEM; MEGUID SHAKER A. , Advances in the development of superhydrophobic and icephobic surfaces[J]. International Journal of Mechanics and Materials in Design,2022,18(3):509-547. doi: 10.1007/s10999-022-09593-x
    [31] MA Yiqi, ZHANG Jixi, ZHU Guannan, et al. Robust photothermal self-healing superhydrophobic coating based on carbon nanosphere/carbon nanotube composite[J]. Materials & Design,2022,221:110897.
    [32] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1):102-118. doi: 10.7536/PC161015

    ZHENG Haikun, CHANG Shinan, ZHAO Yuanyuan. Anti-icing & icephobic mechanism and applications of superhydrophobic /ultra slippery surface[J]. Progress in Chemistry,2017,29(1):102-118(in Chinese). doi: 10.7536/PC161015
    [33] 黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3):167-176.

    LI Yushan, LI Jie. Research progress in durable super-hydrophobic surface based on PDMS[J]. China Plastics,2022,36(3):167-176(in Chinese).
    [34] 孙文, 褚福强, 李淑昕, 等. 光热超疏水材料防除冰机理及应用研究进展[J/OL][J]. 表面技术, 2022, 11:1-22.

    SUN Wen, CHU Fuqiang, LI Shuxin, et al. Research Progress on Anti-icing Mechanisms and Applications of Photothermal Superhydrophobic Materials[J/OL][J]. Surface Technology,2022,11:1-22(in Chinese).
    [35] XUE Chaohua, LI Huigui, GUO Xiaojing, et al. Superhydrophobic anti-icing coatings with self-deicing property using melanin nanoparticles from cuttlefish juice[J]. Chemical Engineering Journal,2021,424:130553. doi: 10.1016/j.cej.2021.130553
    [36] MORIYA T, MANABE K, TENJIMBAYASHI M, et al. A superrepellent coating with dynamic fluorine chains for frosting suppression: effects of polarity, coalescence and ice nucleation free energy barrier[J]. RSC Advances,2016,6(95):92197-92205. doi: 10.1039/C6RA18483A
    [37] LEI Sheng, FANG Xin, OU Junfei, et al. Icing of static and high-speed water droplets on superhydrophobic surface[J]. Materials Letters,2021,285:129048. doi: 10.1016/j.matlet.2020.129048
    [38] WANG Lei, GONG Qihua, ZHAN Shihui, et al. Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface[J]. Advanced Materials,2016,28(35):7729-7735. doi: 10.1002/adma.201602480
    [39] GUO Peng, ZHENG Yongmei, WEN Mengxi, et al. Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces[J]. Advanced Materials,2012,24(19):2642-2648. doi: 10.1002/adma.201104412
    [40] PAN Rui, ZHANG Hongjun, ZHONG Minlin. Triple-Scale Superhydrophobic Surface with Excellent AntiIcing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication[J]. ACS Applied Materials & Interfaces,2021,13(1):1743-1753.
    [41] PAN Sai, WANG Nan, XIONG Dangsheng, et al. Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion[J]. Applied Surface Science,2016,389:547-553. doi: 10.1016/j.apsusc.2016.07.138
    [42] LI Yabin, HU Tao, LI Bucheng, et al. Totally Waterborne and Highly Durable Superamphiphobic Coatings for Anti-Icing and Anticorrosion[J]. Advanced Materials Interfaces 2019, 6 (23): 1901255.
    [43] LIU G. Y., YUAN Y., LIAO R. J., et al. Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance[J]. Surfaces and Interfaces,2022,28:101588. doi: 10.1016/j.surfin.2021.101588
    [44] 韩佳, 勾昱君, 秦仪. 超疏水表面制备及防冰抑霜性能研究[J]. 低温工程, 2022, 250(6):48-55.

    HAN Jia, GUO Yujun, QIN Yi. Preparation of super hydrophobic surface and study on anti-icing and anti-frost properties[J]. Cryogenic Engineering,2022,250(6):48-55(in Chinese).
    [45] 胡琴, 杨航, 蒋兴良, 等. 覆冰损伤后天然超疏水表面湿润性恢复机理研究[J/OL][J]. 表面技术, 2022, 12:1-7.

    HU Qin, YANG Hang, JIANG Xingliang, et al. Wettability recovery mechanism of natural superhydrophobic surface after Icing damage [J/OL][J]. Surface Technology,2022,12:1-7(in Chinese).
    [46] 刘佳佳, 黄凯健, 王家庆, 等. 路面用超疏水材料的抑冰研究进展[J/OL][J]. 化工新型材料, 2022, 11:1-8.

    LIU Jiajia, HUANG Kaijian, WANG Jiaqing, et al. Research progress on ice suppression of superhydrophobic materials for road surface[J/OL][J]. New Chemical Materials,2022,11:1-8(in Chinese).
    [47] 张树林, 刘云峰, 梁前晟, 等. 防覆冰涂料在输电线路上的应用[J]. 中国涂料, 2013, 28(3):71-73. doi: 10.3969/j.issn.1006-2556.2013.03.017

    ZHANG Shulin, LIU Yunfeng, LIANG Qiansheng, et al. Application of anti-icing coatings on transmission line[J]. China Coatings,2013,28(3):71-73(in Chinese). doi: 10.3969/j.issn.1006-2556.2013.03.017
    [48] XIANG Tengfei, HAN Yang, GUO Zongqi, et al. Fabrication of Inherent Anticorrosion Superhydrophobic Surfaces on Metals[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5598-5606.
    [49] 王喆, 沈一洲, 刘森云, 等. 低冰粘附力涂层的设计与制备技术研究进展[J]. 表面技术, 2021, 50(8):18-27.

    WANG Zhe, SHEN Yizhou, LIU Senyun, et al. Research progress in the design and fabrication technology of low-ice-adhesion coatings[J]. Surface Technology,2021,50(8):18-27(in Chinese).
    [50] KIM P, WONG T-S, ALVARENGA J, et al. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance[J]. ACS Nano,2012,6(8):6569-6577. doi: 10.1021/nn302310q
    [51] 周橙. 基于织物表面形貌特征的吸湿快干性能研究[D]. 东华大学, 2020.

    Zhou Orange. Study on moisture absorption and quick drying properties of fabric based on surface morphology[D]. Donghua University, 2020(in Chinese).
    [52] YEONG Y H, WANG C, WYNNE K J, et al. Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long Term Infusion Stability[J]. ACS applied materials & interfaces, 2016: 32050.
    [53] RAO Qingqing, LU Yulin, SONG Lina, et al. Highly efficient self-repairing slippery liquid-infused surface with promising anti-icing and anti-fouling performance[J]. ACS Applied Materials & Interfaces,2021,13(33):40032-40041.
    [54] HUANG Dengxing, CHENG Xungang, TANG Xindi, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature,2011,477:443-447. doi: 10.1038/nature10447
    [55] 王亮. 7075铝合金超润滑表面的制备与防覆冰性能研究[D]. 重庆大学, 2021.

    WANG Liang. Study on preparation and anti-icing performance of 7075 aluminum alloy slippery liquid-infused porous surface[D]. Chongqing University, 2021(in Chinese).
    [56] Barthwal S, Lee B, Lim S H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil[J]. Applied Surface Science,2019,496:143677. doi: 10.1016/j.apsusc.2019.143677
    [57] 刘俊文, 张净, 李琼, 等. 飞机蒙皮表面的预处理及涂装研究[J]. 中国金属通报, 2022, 1066(4):138-140.

    LIU Junwen, ZHANG Jing, LI Qiong, et al. Research on pretreatment and coating of aircraft skin Surface[J]. China Metal Bulletin,2022,1066(4):138-140(in Chinese).
    [58] 向娇娇, 樊莎, 高达利, 等. 光热转换用碳基材料的制备及应用进展[J/OL][J]. 浙江理工大学学报(自然科学版), 2022, 10:1-10.

    XIANG Jiaojiao, Fan Sha, Gao Daoli, et al. Progress in preparation and application of carbon-based materials for photothermal conversion[J/OL][J]. Journal of Zhejiang University of Technology (Natural Science Edition),2022,10:1-10(in Chinese).
    [59] CHEN Chaoji, KUANG Yudi, HU Liangbin. Challenges and Opportunities for Solar Evaporation[J]. Joule,2019,3(3):683-718.
    [60] 孙鹏. 光热超疏水双功能表面的构建及其防除冰性能研究[D]. 中国矿业大学, 2022.

    SUN Peng. Construction of dual function surface with photothermal and superhydrophobic properties and its characteristics of anti-icing and deicing[D]. China University of Mining and Technology, 2022(in Chinese).
    [61] MA LinWei, WANG Jinke, ZHAO FengTong, et al. Plasmon-mediated photothermal and superhydrophobic TiN-PTFE film for anti-icing/deicing applications[J]. Composites Science and Technology,2019,181:107696. doi: 10.1016/j.compscitech.2019.107696
    [62] CHEN Long, REN Junjie, ZHANG Yishu, et al. Microstructure simulation and heat transfer optimization for graphene oxide doped anti-/deicing composites[J]. Composites Science and Technology,2021,213:108901.
    [63] QIN Liming, ZHU Ying, ZHOU Xin et al. Fast Healable Superhydrophobic Material[J]. ACS Applied Materials & Interfaces,2019,11(32):29388-29395.
    [64] WANG Peng, YAO Tao, Li Ziqiang, A superhydrophobic/electrothermal synergistically anti-icing strateg based on graphene composite[J]. Composites Science and Technology, 2020, 198: 108307.
    [65] KIM Aeree, Kim Seonghyeon, HUH Myoung, et al. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite[J]. Journal of Materials Science & Technology,2020,49:106-116.
    [66] WU Xiaoli, LIAO Yijun, YAO Lin, et al. A non-percolative rGO/XLPE composite with high electrothermal performance at high voltage and effective de/anti-icing for transmission-lines[J]. Composites Science and Technology,2022,230:109772. doi: 10.1016/j.compscitech.2022.109772
    [67] 舒忠虎, 何建军, 段焱森, 等. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(S2) : 56-59.

    SHU Zhong-hu, HE Jianjun, DUAN Yansen, et al. Study on preparation of EP-ZnO nano superhydrophobic coating by compound fluorination modification[J]. Materials Review, 201, 35(S2): 56-59(in Chinese).
    [68] YANG Deyun, TAO Ran, HOU Xianghui, et al. Nanoscale “Earthquake” Effect Induced by Thin Film Surface Acoustic Waves as a New Strategy for Ice Protection[J]. Advanced Materials Interfaces,2021,8(2):2001776. doi: 10.1002/admi.202001776
    [69] ZHAO Zhehui, CHEN Huawei, ZHU Yantong, et al. A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances[J]. Composites Science and Technology,2022,227:109578. doi: 10.1016/j.compscitech.2022.109578
    [70] LEE S. -H, KIM J, SEONG M, et al. Magneto-responsive photothermal composite cilia for active anti-icing and de-icing[J]. Composites Science and Technology,2022,217:109086. doi: 10.1016/j.compscitech.2021.109086
    [71] 谢震廷, 王宏, 朱恂, 等. 光热超疏水材料的制备与防、除冰性能研究[J]. 化工学报, 2021, 72(11):5840-5848.

    XIE Zhenting, WANG Hong, ZHU Xun, et al. Preparation andanti-icing/deicing performance of photothermal superhydropho-bic surfaces[J]. Chin J Chem Technol,2021,72(11):5840-5848(in Chinese).
    [72] 彭慧璇, 张健洪. 基于电热效应超疏水抗冰涂层的制备及其性能研究[J]. 现代盐化工, 2022, 49(5):10-12.

    PENG Huixuan, ZHANG Jianhong. Preparation and properties of superhydrophobic anti-ice coating based on electrothermal effect[J]. Modern Salt and Chemical Industry,2022,49(5):10-12(in Chinese).
    [73] 马丕波, 梅德轩. 生物医用纺织材料研究应用与进展[J]. 服装学报, 2022, 7(3):189-195. doi: 10.3969/j.issn.1671-7147.2022.03.001

    MA Pibo, MEI Dexuan. Research Application and Progress of Biomedical Textile Materials[J]. Acta Apparel Sinica,2022,7(3):189-195(in Chinese). doi: 10.3969/j.issn.1671-7147.2022.03.001
    [74] 赵颖. 航空航天用纺织材料全球关注[J]. 纺织科学研究, 2021(9):24-25.

    ZHAO Ying. Global concern of textile materials for aerospace[J]. Textile Science Research,2021(9):24-25(in Chinese).
    [75] Li W, Liu K, Zhang Y. A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties[J]. Chemical engineering journal, 2022: 446 P3.
    [76] JIN Kaili, ZHANG Ming, WANG Jun, et al. Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor’s equipment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,651:129639. doi: 10.1016/j.colsurfa.2022.129639
    [77] LI Xiang, Li Yang, GUAN Tingting, et al. Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity[J]. ACS Applied Materials & Interfaces 2018, 10 (14): 12042-12050.
    [78] Wang P, Li Z, Xie Q, et al. A Passive Anti-icing Strategy Based on a Superhydrophobic Mesh with Extremely Low Ice Adhesion Strength[J]. Journal of Biomimetic Engineering:English Edition,2021,18(1):10.
    [79] XUE Chaohua, DU Mimi, GUO Xiaojing, et al. Fabrication of superhydrophobic photothermal conversion fabric via layer-by-layer assembly of carbon nanotubes[J]. Cellulose 2021, 28 (8), 5107-5121.
    [80] WANG Bin, YU Shuzhen, YANG Qi, et al. Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing[J]. Materials Today Physics,2022,24:100683. doi: 10.1016/j.mtphys.2022.100683
    [81] ZENG Hongyu, WANG Ping, LIANG Lizhu, et al. Facile preparation of superhydrophobic cotton fabric with a photothermal conversion effect via polypyrrole deposition for oil/water separation[J]. Journal of Environmental Chemical Engineering,2022,10(1):106915. doi: 10.1016/j.jece.2021.106915
    [82] Hu J, Li H, Liu Z, et al. Functionalized superhydrophobic quartz fabric with electro-photo-thermal conversion performance: Designed for low-cost and efficient self-heating deicing[J]. Surface and Coatings Technology,2021,425:127646. doi: 10.1016/j.surfcoat.2021.127646
    [83] LUO Junchen, HUO Liyao, WANG Lin, et al. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance[J]. Chemical Engineering Journal,2020,391:123537. doi: 10.1016/j.cej.2019.123537
    [84] 孙英纯, 刘如, 徐建峰, 等. 绿色环保型超疏水涂层的研究进展[J/OL][J]. 表面技术, 2022, 11:1-22.

    SUN Yingchun, LIU Ru, XU Jianfeng, et al. Research progress and development trend of green and environmental friendly superhydrophobic coating[J/OL][J]. Surface Technology,2022,11:1-22(in Chinese).
    [85] Liu, Yu, Song, et al. Anti- and De-Icing Behaviors of Superhydrophobic Fabrics[J]. Coatings,2018,8(6):198. doi: 10.3390/coatings8060198
    [86] Chen, Tian, Guo, et al. An extreme environment-tolerant anti-icing coating. Chemical Engineering Science 2022, 262: 118010.
  • 加载中
计量
  • 文章访问数:  212
  • HTML全文浏览量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-02-07
  • 录用日期:  2023-02-25
  • 网络出版日期:  2023-03-08

目录

    /

    返回文章
    返回