留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SMEP/PDMS@ZnO@SiO2自修复超疏水涂层及其防腐性能

赵亚梅 曹婷婷 丁思奇 霍梦丹 陈丽

赵亚梅, 曹婷婷, 丁思奇, 等. SMEP/PDMS@ZnO@SiO2自修复超疏水涂层及其防腐性能[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 赵亚梅, 曹婷婷, 丁思奇, 等. SMEP/PDMS@ZnO@SiO2自修复超疏水涂层及其防腐性能[J]. 复合材料学报, 2022, 40(0): 1-12
Yemei ZHANG, Tingting CAO, Siqi DING, Mengdan HUO, Li CHEN. Self-healing Superhydrophobic SMEP/PDMS@ZnO@SiO2 Coating and its Anticorrosion Performance[J]. Acta Materiae Compositae Sinica.
Citation: Yemei ZHANG, Tingting CAO, Siqi DING, Mengdan HUO, Li CHEN. Self-healing Superhydrophobic SMEP/PDMS@ZnO@SiO2 Coating and its Anticorrosion Performance[J]. Acta Materiae Compositae Sinica.

SMEP/PDMS@ZnO@SiO2自修复超疏水涂层及其防腐性能

基金项目: 国家自然科学基金(No.22008187),国家级大学生创新创业训练计划项目(2021107009035),陕西省教育厅项目(19JC017),西安市科技计划项目(2020KJRC0025)
详细信息
    通讯作者:

    赵亚梅,博士,副教授,硕士生导师,研究方向为超疏水材料 E-mail: zhaoyameihp@126.com

  • 中图分类号: O631 O69

Self-healing Superhydrophobic SMEP/PDMS@ZnO@SiO2 Coating and its Anticorrosion Performance

  • 摘要: 本文针对环氧树脂基类超疏水防腐涂层的物理损伤修复速度较慢,并结合不锈钢金属长期处于高湿高盐等环境下高效防腐与保护的实际应用需求,以微晶蜡强化的环氧树脂基自修复涂层(SMEP)为底层,以超疏水材料PDMS@ZnO@SiO2(PZS)为表层,基于双层设计制备了一种较快修复机械损伤、不锈钢持久防腐的自修复超疏水涂层SMEP/PDMS@ZnO@SiO2(SMEP/PZS),并着重对其修复前后SMEP/PZS涂层的润湿性、耐蚀性及其自修复与防腐机制等进行了深入探讨。结果表明,SMEP/PZS涂层具有良好的超疏水性及自清洁等相关性能,其超疏水性随着低表面能物质PFDTMS含量增加而增强,水接触角、滚动角最佳可达157.6和2.6°。其次,SMEP/PZS涂层有较快的自修复能力,将该机械模拟的受损涂层于85℃下在20 min较短时间内进行修复,其最佳机械划痕由45 μm缩小至1.0 μm,修复率达97.8%。此外,SMEP/PZS涂层表现良好的耐蚀性,且将修复后的该涂层置于3.5wt%NaCl溶液中浸泡14天后,其耐腐蚀性接近于原始涂层。将SMEP/PZS涂层涂覆在不锈钢基底上,在3.5wt%NaCl溶液中所测点蚀电位Eb与裸不锈钢的相比正移近10倍,维钝电流密度Ip下降2个数量级,对304不锈钢基底具有相对更为持久的防腐与保护。最后,进一步探讨了SMEP/PZS涂层的自修复与防腐蚀机制。

     

  • 图  1  SMEP/PDMS@ZnO@SiO2(SMEP/PZS)涂层的制备过程示意图

    Figure  1.  The preparation process of SMEP/PDMS@ZnO@SiO2(SMEP/PZS) coating

    PDMS—Polydimethylsiloxane; PFDTMS—Perfluorodecyltrimethoxysilane; NGDE—Neopentyl glycol diglycidyl ether; DGEBA—Bisphenol A diglycidyl ether; D-230—Polyetheramine D-230; EA—Ethyl acetate.

    图  2  SMEP、PZS涂层及纳米粒子的红外光谱曲线

    Figure  2.  The infrared spectrum of the SMEP、PZS coating and nanoparticles

    图  3  表面形貌,SMEP涂层(a);PZS涂层:(b)7wt% PFDTMS,(c)21wt% PFDTMS,(d)42wt% PFDTMS;SMEP/PZS涂层:(e)7wt% PFDTMS,(f)21wt% PFDTMS,(g)42wt% PFDTMS

    Figure  3.  SEM images of SMEP coating (a); PZS coating with (b) 7wt% PFDTMS, (c) 21wt% PFDTMS, (d) 42wt% PFDTMS; SMEP/PZS coating with (e) 7wt% PFDTMS, (f) 21wt% PFDTMS, (g) 42wt% PFDTMS

    图  4  不同含量PFDTMS的SMEP/PZS原始涂层的自清洁过程

    Figure  4.  The self-cleaning process of SMEP/PZS original coating with different content of PFDTMS

    图  5  裸不锈钢、PZS、SMEP及SMEP/PZS涂层的交流阻抗谱,(a)Nyquist图;(b)阻抗模量曲线;(c)相位角曲线;(d)不同PFDTMS含量SMEP/PZS涂层的阻抗模量曲线

    Figure  5.  Ac impedance spectroscopy of bare stainless steel, PZS, SMEP and SMEP/PZS coatings, (a) Nyquist diagram; (b) impedance modulus curve; (c) phase angle curve; (d) impedance modulus curve of SMEP/PZS with different content of PFDTMS.

    Z', Z"—Nyquist diagram represent the real and imaginary parts of the impedance

    图  6  裸不锈钢、分别涂覆PZS、SMEP及SMEP/PZS涂层的不锈钢基底在3.5wt%NaCl溶液中的极化曲线

    Figure  6.  Polarization curves of bare stainless steel and stainless steel substrates coated with PZS, SMEP and SMEP/PZS respectively in 3.5wt%NaCl solution

    图  7  修复前后涂层的表面形貌,SMEP涂层(a1、a2);SMEP/PZS涂层:(b1、b2)7wt% PFDTMS,(c1、c2)21wt% PFDTMS,(d1、d2)42wt% PFDTMS。注:脚标1为修复前,脚标2为修复后

    Figure  7.  SEM images of the coating before and after healing, SMEP coating (a1、a2); SMEP/PZS coating with (b1、b2) 7wt% PFDTMS, (c1、c2) 21wt% PFDTMS, (d1、d2) 42wt% PFDTMS. Note: Pin 1 is before repair, and pin 2 is after repair

    图  8  涂层修复前后的低频阻抗模量曲线,SMEP涂层(a);SMEP/PZS涂层:(b)7wt% PFDTMS,(c)21wt% PFDTMS,(d)42wt% PFDTMS

    Figure  8.  Impedance modulus of the coating before and after healing , SMEP coating (a); SMEP/PZS coating with (b)7wt% PFDTMS, (c) 21wt% PFDTMS, (d) 42wt% PFDTMS

    图  9  修复后涂层于3.5wt% NaCl溶液浸泡1 day,7 days,14 days后的阻抗模量曲线,SMEP(a);SMEP-ZPS:wt%(b)7wt%PFDTMS,(c)21wt%PFDTMS,(d)42wt% PFDTMS

    Figure  9.  The impedance modulus curve of coating after healing and immersion in 3.5wt% NaCl solution for 1 day、7 days、14 days, SMEP(a); SMEP/PZS coating with (b) 7wt% PFDTMS, (c) 21wt% PFDTMS, (d) 42wt% PFDTMS

    图  10  修复后涂层浸泡于3.5wt% NaCl溶液14 days后的光学照片,SMEP涂层(a);SMEP/PZS涂层:(b)7wt% PFDTMS,(c)21wt% PFDTMS,(d)42wt% PFDTMS

    Figure  10.  The optical photo of the healed coating after being immersed in 3.5wt% NaCl solution for 14 days , SMEP(a); SMEP/PZS coating with (b)7wt% PFDTMS, (c)21wt% PFDTMS, (d)42wt% PFDTMS

    图  11  SMEP/PZS涂层的自修复与防腐机制示意图

    Figure  11.  Self-healing and anti-corrosion mechanism of SMEP/PZS coating

    表  1  PDMS@ZnO@SiO2(PZS)和SMEP/PDMS@ZnO@SiO2(SMEP/PZS)涂层表面的水接触角及滚动角

    Table  1.   Contact angle and rolling angle of PDMS@ZnO@SiO2(PZS) and SMEP/PDMS@ZnO@SiO2(SMEP/PZS) coatings

    PZSSMEP/PZS
    0wt%7wt%21wt%42wt%0wt%7wt%21wt%42wt%
    Unsoaked CA/(°) 151.8 154.1 156.7 159.4 150.9 153.6 155.9 157.6
    SA/(°) 6.9 4.6 3.6 1.8 7.8 5.3 3.9 2.6
    Soaked 12 h CA/(°) 149.1 152.1 154.5 155.8 148.9 151.9 153.8 155.4
    SA/(°) 12.6 6.5 5.0 4.1 13 6.4 5.2 4.4
    Note: CA stands for static water contact angle, SA stands for roll angle.
    下载: 导出CSV

    表  2  由裸不锈钢、分别涂覆PZS、SMEP及SMEP/PZS涂层的不锈钢基底的极化曲线所得相关评价参数

    Table  2.   The related evaluation parameters were obtained from the polarization curve of bare stainless steel and stainless steel substrates coated with PZS, SMEP and SMEP/PZS

    CoatingEcorr/VIcorr/AEb/VIp/A
    304 stainless steel−0.7529.728×10-50.05621.020×10-4
    PZS−0.4061.458×10-6−0.047.476×10-6
    SMEP−0.2696.042×10-70.04556.783×10-6
    SMEP/PZS−0.1605.283×10-80.3126.672×10-6
    Notes: Ecorr stand for self-corrosion potential, Icorr stand for self-corrosion current density, Eb stand for pitting potential, Ip stand for passive current density.
    下载: 导出CSV

    表  3  修复前后不同含量PFDTMS的SMEP/PZS涂层的接触角及滚动角

    Table  3.   Contact angle and rolling angle of SMEP/PZS coating with different content of PFDTMS before and after healing

    CA/(°)SA/(°)
    7 wt%21 wt%42 wt%7 wt%21 wt%42 wt%
    Original 153.6 155.9 157.6 5.3 4.9 2.6
    Scratched 147 145.4 146.4 16.6 17.8 16.1
    Healed 152.4 153.8 155.3 5.9 5.8 4.9
    下载: 导出CSV
  • [1] LINA E, LOUISE O, IRENE R-M. The effect of superhydrophobic wetting state on corrosion protection The-AKD example[J]. Journal of Colloid and Interface Science,2013,412:56-64. doi: 10.1016/j.jcis.2013.09.006
    [2] TAMMY L M, ROBERT L P, EDWARD T. K. Passivation of metal alloys using sol-gel-derived materials-a review[J]. Progress in Organic Coatings,2001,41:233-238. doi: 10.1016/S0300-9440(01)00134-5
    [3] ZHANG X F, JIANG F, CHEN R J, et al. Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection[J]. Corrosion Science,2020,173:108797. doi: 10.1016/j.corsci.2020.108797
    [4] ZHAO B, JIA R P. Preparation of super-hydrophobic films based on waterborne polyurethane and their hydrophobicity characteristics[J]. Progress in Organic Coatings,2019,135:440-448. doi: 10.1016/j.porgcoat.2019.06.025
    [5] ZHANG K Q, XU F, Gao Y F. Superhydrophobic and oleophobic dual-function coating with durablity and self-healing property based on a waterborne solution[J]. Applied Materials Today,2021,22:100970. doi: 10.1016/j.apmt.2021.100970
    [6] MA W J, DING Y C, LI Y S, et al. Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification[J]. Journal of Membrane Science,2021,634:119402. doi: 10.1016/j.memsci.2021.119402
    [7] ZHANG Z B, XUE F X, BAI W X, et al. Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance[J]. Surface and Coatings Technology,2021,410:126952. doi: 10.1016/j.surfcoat.2021.126952
    [8] LI D W, WANG H Y, LIU Y, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal,2019,367:169-179. doi: 10.1016/j.cej.2019.02.093
    [9] ZHAO R, CHEN Y, LIU G Z, et al. Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles[J]. Materials Letters,2018,229:281-285. doi: 10.1016/j.matlet.2018.07.040
    [10] WANG L M, URATA C, SATO T, et al. Self-healing superhydrophobic materials showing quick damage recovery and long-term durability[J]. Langmuir,2017,33(38):9972-9978. doi: 10.1021/acs.langmuir.7b02343
    [11] FU Y, XU F, WENG D, et al. Superhydrophobic foams with chemical- and mechanical-damage-healing abilities enabled by self-healing polymers[J]. ACS Applied Materials & Interfaces,2019,11(40):37285-37294.
    [12] ZHAO D L, DU Z K, LIU S S, et al. UV light curable self-healing superamphiphobic coatings by photopromoted disulfide exchange reaction[J]. ACS Applied Polymer Materials,2019,1:2951-2960. doi: 10.1021/acsapm.9b00656
    [13] CHEN J M, FANG L, XU Z Z, et al. Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light[J]. Progress in Organic Coatings,2016,101:543-552. doi: 10.1016/j.porgcoat.2016.09.020
    [14] XU Y R, CHEN D J. Shape memory-assisted self-healing polyurethane inspired by a suture technique[J]. Journal of Materials Science,2018,53(14):10582-10592. doi: 10.1007/s10853-018-2346-9
    [15] HUANG Y, DENG L, JU P, et al. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres[J]. ACS Applied Materials & Interfaces,2018,10(27):23369-23379.
    [16] WANG L T, DENG L P, ZHANG D W, et al. Shape memory composite (SMC) self-healing coatings for corrosion protection[J]. Progress in Organic Coatings,2016,97:261-268. doi: 10.1016/j.porgcoat.2016.04.041
    [17] QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A,2017,5(5):2355-2364. doi: 10.1039/C6TA10903A
    [18] ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science,2020,575:140-149. doi: 10.1016/j.jcis.2020.04.097
    [19] ZHANG J J, Wei J F, Li B C, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science,2021,594:836-847. doi: 10.1016/j.jcis.2021.03.005
    [20] ZHANG J L, GU C D, TONG Y Y, et al. A smart superhydrophobic coating on AZ31 B magnesium alloy with self-healing effect[J]. Advanced Materials Interfaces,2016,3(14):1500694-1500703. doi: 10.1002/admi.201500694
    [21] SAHMETLIOGLU E, VAROL R, TOPPARE L, et al. Synthesis and characterization of conducting copolymers of bisphenol A-diglycidyl ether with thiophene side-groups and pyrrole[J]. Journal of Macromolecular Science, Part A,2009,46(6):584-590. doi: 10.1080/10601320902851819
    [22] PENCZEK S, KALUZYNSKI K and PRETULA J. Addition of H3PO4 to diglycidyl ethers of bisphenol A: Kinetics and product structure[J]. Journal of Applied Polymer Science,2007,105(1):246-254. doi: 10.1002/app.26087
    [23] QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A,2017,5(5):2355-2364. doi: 10.1039/C6TA10903A
    [24] XU H D, FAN S H, LU Y, et al. Proposal and verification of a novel superhydrophobic-conductive anti-corrosion polyaniline-silica coating[J]. Bulletin of the Chemical Society of Japan,2020,93(9):1114-1120. doi: 10.1246/bcsj.20200051
    [25] ZHANG D W, QIAN H C, WANG L T, et al. Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments[J]. Corrosion Science,2016,103:230-241. doi: 10.1016/j.corsci.2015.11.023
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-04-23
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回