留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状记忆环氧树脂/聚二甲基硅氧烷@ZnO@SiO2自修复超疏水涂层及其防腐性能

赵亚梅 曹婷婷 丁思奇 霍梦丹 陈丽

赵亚梅, 曹婷婷, 丁思奇, 等. 形状记忆环氧树脂/聚二甲基硅氧烷@ZnO@SiO2自修复超疏水涂层及其防腐性能[J]. 复合材料学报, 2022, 39(12): 5946-5957. doi: 10.13801/j.cnki.fhclxb.20220506.002
引用本文: 赵亚梅, 曹婷婷, 丁思奇, 等. 形状记忆环氧树脂/聚二甲基硅氧烷@ZnO@SiO2自修复超疏水涂层及其防腐性能[J]. 复合材料学报, 2022, 39(12): 5946-5957. doi: 10.13801/j.cnki.fhclxb.20220506.002
ZHAO Yamei, CAO Tingting, DING Siqi, et al. Self-healing superhydrophobic shape memory epoxy resin/polydimethylsiloxane@ZnO@SiO2 coating and its anticorrosion performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5946-5957. doi: 10.13801/j.cnki.fhclxb.20220506.002
Citation: ZHAO Yamei, CAO Tingting, DING Siqi, et al. Self-healing superhydrophobic shape memory epoxy resin/polydimethylsiloxane@ZnO@SiO2 coating and its anticorrosion performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5946-5957. doi: 10.13801/j.cnki.fhclxb.20220506.002

形状记忆环氧树脂/聚二甲基硅氧烷@ZnO@SiO2自修复超疏水涂层及其防腐性能

doi: 10.13801/j.cnki.fhclxb.20220506.002
基金项目: 国家自然科学基金(22008187);国家级大学生创新创业训练计划项目(2021107009035);陕西省教育厅项目(19JC017);西安市科技计划项目(2020KJRC0025)
详细信息
    通讯作者:

    赵亚梅,博士,副教授,硕士生导师,研究方向为超疏水材料 E-mail: zhaoyameihp@126.com

  • 中图分类号: O631;O69

Self-healing superhydrophobic shape memory epoxy resin/polydimethylsiloxane@ZnO@SiO2 coating and its anticorrosion performance

  • 摘要: 本文针对环氧树脂基类超疏水防腐涂层的物理损伤修复速度较慢,并结合不锈钢金属长期处于高湿高盐等环境下高效防腐与保护的实际应用需求,以微晶蜡强化的形状记忆环氧树脂涂层(SMEP)为底层,以超疏水材料聚二甲基硅氧烷(PDMS)@ZnO@SiO2(PZS)为表层,基于双层设计制备了一种较快修复机械损伤、不锈钢持久防腐的自修复超疏水涂层SMEP/PDMS@ZnO@SiO2(SMEP/PZS),并着重对其修复前后SMEP/PZS涂层的润湿性、耐蚀性及其自修复与防腐机制等进行了深入探讨。结果表明,SMEP/PZS涂层具有良好的超疏水性及自清洁等相关性能,其超疏水性随着低表面能物质全氟癸基三甲氧基硅烷 (PFDTMS)含量增加而增强,水接触角、滚动角最佳可达157.6°和2.6°。其次,SMEP/PZS涂层有较快的自修复能力,将该机械模拟的受损涂层于85℃下在20 min较短时间内进行修复,其最佳机械划痕由45 μm缩小至1.0 μm,修复率达97.8%。此外,SMEP/PZS涂层表现良好的耐蚀性,且将修复后的该涂层置于3.5wt% NaCl溶液中浸泡14天后,其耐腐蚀性接近于原始涂层。将SMEP/PZS涂层涂覆在不锈钢基底上,在3.5wt% NaCl溶液中所测点蚀电位Eb与裸不锈钢的相比正移近10倍,维钝电流密度Ip下降2个数量级,对304不锈钢基底具有相对更为持久的防腐与保护。最后,进一步探讨了SMEP/PZS涂层的自修复与防腐蚀机制。

     

  • 图  1  形状记忆环氧树脂(SMEP)/聚二甲基硅氧烷(PDMS)@ZnO@SiO2 (SMEP/PZS)涂层的制备过程示意图

    Figure  1.  Preparation process of shape memory epoxy resin (SMEP)/polydimethylsiloxane (PDMS)@ZnO@SiO2 (SMEP/PZS) coating

    PFDTMS—Perfluorodecyltrimethoxysilane; NGDE—Neopentyl glycol diglycidyl ether; DGEBA—Bisphenol A diglycidyl ether; D-230—Polyetheramine D-230; EA—Ethyl acetate

    图  2  SMEP、PZS涂层及纳米粒子的FTIR图谱

    Figure  2.  FTIR spectra of the SMEP, PZS coating and nanoparticles

    图  3  SMEP涂层 (a);7wt% PFDTMS (b)、21wt% PFDTMS (c)、42wt% PFDTMS (d)的PZS涂层;7wt% PFDTMS (e)、21wt% PFDTMS (f) 和42wt% PFDTMS (g) 的SMEP/PZS涂层的SEM图像

    Figure  3.  SEM images of SMEP coating (a); PZS coating with 7wt% PFDTMS (b), 21wt% PFDTMS (c), 42wt% PFDTMS (d); SMEP/PZS coating with7wt% PFDTMS (e), 21wt% PFDTMS (f), 42wt% PFDTMS (g)

    图  4  不同含量PFDTMS的SMEP/PZS原始涂层的自清洁过程

    Figure  4.  Self-cleaning process of SMEP/PZS original coating with different content of PFDTMS

    图  5  裸不锈钢、PZS、SMEP及SMEP/PZS涂层的交流阻抗谱:(a) Nyquist图;(b) 阻抗模量曲线;(c) 相位角曲线;(d) 不同PFDTMS含量SMEP/PZS涂层的阻抗模量曲线

    Figure  5.  Alternating current impedance spectroscopy of bare stainless steel, PZS, SMEP and SMEP/PZS coatings: (a) Nyquist diagram; (b) Impedance modulus curves; (c) Phase angle curves; (d) Impedance modulus curves of SMEP/PZS with different content of PFDTMS

    Z′—Real impedance; Z"—Imaginary impedance; Z—Polarization impedance

    图  6  裸不锈钢和分别涂覆PZS、SMEP及SMEP/PZS涂层的不锈钢基底在3.5wt% NaCl溶液中的极化曲线

    Figure  6.  Polarization curves of bare stainless steel and stainless steel substrates coated with PZS, SMEP and SMEP/PZS respectively in 3.5wt% NaCl solution

    i—Electric current density

    图  7  SMEP涂层 ((a1)、(a2))和7wt% PFDTMS((b1)、(b2))、21wt% PFDTMS ((c1)、(c2))、42wt% PFDTMS ((d1)、(d2)) 的SMEP/PZS涂层修复前后涂层的SEM图像(脚标1为修复前,脚标2为修复后)

    Figure  7.  SEM images of SMEP coating ((a1), (a2)) and SMEP/PZS coating with 7wt% PFDTMS ((b1), (b2)),21wt% PFDTMS ((c1), (c2)), 42wt% PFDTMS ((d1), (d2)) before and after healing (Pin 1 is before repair, pin 2 is after repair)

    图  8  SMEP涂层 (a) 和7wt% PFDTMS (b)、21wt% PFDTMS (c)、42wt% PFDTMS (d) 的SMEP/PZS涂层修复前后的低频阻抗模量曲线

    Figure  8.  Impedance modulus curves of SMEP coating (a) and SMEP/PZS coating with 7wt% PFDTMS (b), 21wt% PFDTMS (c) and 42wt% PFDTMS (d) before and after healing

    图  9  SMEP涂层 (a)、7wt% PFDTMS (b)、21wt% PFDTMS (c)、42wt% PFDTMS (d) 的SMEP-ZPS涂层修复后于3.5wt% NaCl溶液浸泡1天、7天、14天后的阻抗模量曲线

    Figure  9.  Impedance modulus curves after healing and immersion in 3.5wt% NaCl solution for 1 day, 7 days, 14 days of SMEP coating (a) and SMEP/PZS coating with 7wt% PFDTMS (b), 21wt% PFDTMS (c), 42wt% PFDTMS (d)

    图  10  SMEP涂层 (a)、7wt% PFDTMS (b)、21wt% PFDTMS (c)、42wt% PFDTMS (d) 的SMEP-ZPS涂层修复后浸泡于3.5wt% NaCl溶液14天后的光学照片

    Figure  10.  Optical photos of the healed coating after being immersed in 3.5wt% NaCl solution for 14 days of SMEP coating (a), SMEP/PZS coating with 7wt% PFDTMS (b), 21wt% PFDTMS (c), 42wt% PFDTMS (d)

    图  11  SMEP/PZS涂层的自修复与防腐机制示意图

    Figure  11.  Self-healing and anti-corrosion mechanism of SMEP/PZS coating

    表  1  PZS和SMEP/PZS涂层表面的水接触角(CA)及滚动角(SA)

    Table  1.   Contact angle (CA) and rolling angle (SA) of PZS and SMEP/PZS coatings

    PZSSMEP/PZS
    0wt%7wt%21wt%42wt%0wt%7wt%21wt%42wt%
    Unsoaked CA/(°) 151.8 154.1 156.7 159.4 150.9 153.6 155.9 157.6
    SA/(°) 6.9 4.6 3.6 1.8 7.8 5.3 3.9 2.6
    Soaked 12 h CA/(°) 149.1 152.1 154.5 155.8 148.9 151.9 153.8 155.4
    SA/(°) 12.6 6.5 5.0 4.1 13 6.4 5.2 4.4
    下载: 导出CSV

    表  2  由裸不锈钢和分别涂覆PZS、SMEP及SMEP/PZS涂层的不锈钢基底的极化曲线所得相关评价参数

    Table  2.   Related evaluation parameters obtained from the polarization curves of bare stainless steel and stainless steel substrates coated with PZS, SMEP and SMEP/PZS

    CoatingEcorr/VIcorr/AEb/VIp/A
    304 stainless steel −0.752 9.728×10−5 0.0562 1.020×10−4
    PZS −0.406 1.458×10−6 −0.04 7.476×10−6
    SMEP −0.269 6.042×10−7 0.0455 6.783×10−6
    SMEP/PZS −0.160 5.283×10−8 0.312 6.672×10−6
    Notes: Ecorr—Self-corrosion potential; Icorr—Self-corrosion current density; Eb—Pitting potential; Ip—Passive current density.
    下载: 导出CSV

    表  3  修复前后不同含量PFDTMS的SMEP/PZS涂层的接触角及滚动角

    Table  3.   Contact angle (CA) and rolling angle (SA) of SMEP/PZS coating with different contents of PFDTMS before and after healing

    CA/(°)SA/(°)
    7wt%21wt%42wt%7wt%21wt%42wt%
    Original 153.6 155.9 157.6 5.3 4.9 2.6
    Scratched 147.0 145.4 146.4 16.6 17.8 16.1
    Healed 152.4 153.8 155.3 5.9 5.8 4.9
    下载: 导出CSV
  • [1] LINA E, LOUISE O, IRENE R M. The effect of superhydrophobic wetting state on corrosion protection The-AKD example[J]. Journal of Colloid and Interface Science,2013,412:56-64. doi: 10.1016/j.jcis.2013.09.006
    [2] TAMMY L M, ROBERT L P, EDWARD T K. Passivation of metal alloys using sol-gel-derived materials—A review[J]. Progress in Organic Coatings,2001,41:233-238. doi: 10.1016/S0300-9440(01)00134-5
    [3] ZHANG X F, JIANG F, CHEN R J, et al. Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection[J]. Corrosion Science,2020,173:108797. doi: 10.1016/j.corsci.2020.108797
    [4] ZHAO B, JIA R P. Preparation of superhydrophobic films based on waterborne polyurethane and their hydrophobicity characteristics[J]. Progress in Organic Coatings,2019,135:440-448. doi: 10.1016/j.porgcoat.2019.06.025
    [5] ZHANG K Q, XU F, GAO Y F. Superhydrophobic and oleophobic dual-function coating with durablity and self-healing property based on a waterborne solution[J]. Applied Materials Today,2021,22:100970. doi: 10.1016/j.apmt.2021.100970
    [6] MA W J, DING Y C, LI Y S, et al. Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification[J]. Journal of Membrane Science,2021,634:119402. doi: 10.1016/j.memsci.2021.119402
    [7] ZHANG Z B, XUE F X, BAI W X, et al. Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance[J]. Surface and Coatings Technology,2021,410:126952. doi: 10.1016/j.surfcoat.2021.126952
    [8] LI D W, WANG H Y, LIU Y, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal,2019,367:169-179. doi: 10.1016/j.cej.2019.02.093
    [9] ZHAO R, CHEN Y, LIU G Z, et al. Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles[J]. Materials Letters,2018,229:281-285. doi: 10.1016/j.matlet.2018.07.040
    [10] WANG L M, URATA C, SATO T, et al. Self-healing superhydrophobic materials showing quick damage recovery and long-term durability[J]. Langmuir,2017,33(38):9972-9978. doi: 10.1021/acs.langmuir.7b02343
    [11] FU Y, XU F, WENG D, et al. Superhydrophobic foams with chemical- and mechanical-damage-healing abilities enabled by self-healing polymers[J]. ACS Applied Materials & Interfaces,2019,11(40):37285-37294.
    [12] ZHAO D L, DU Z K, LIU S S, et al. UV light curable self-healing superamphiphobic coatings by photopromoted disulfide exchange reaction[J]. ACS Applied Polymer Materials,2019,1:2951-2960. doi: 10.1021/acsapm.9b00656
    [13] CHEN J M, FANG L, XU Z Z, et al. Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light[J]. Progress in Organic Coatings,2016,101:543-552. doi: 10.1016/j.porgcoat.2016.09.020
    [14] XU Y R, CHEN D J. Shape memory-assisted self-healing polyurethane inspired by a suture technique[J]. Journal of Materials Science,2018,53(14):10582-10592. doi: 10.1007/s10853-018-2346-9
    [15] HUANG Y, DENG L, JU P, et al. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres[J]. ACS Applied Materials & Interfaces,2018,10(27):23369-23379.
    [16] WANG L T, DENG L P, ZHANG D W, et al. Shape memory composite (SMC) self-healing coatings for corrosion protection[J]. Progress in Organic Coatings,2016,97:261-268. doi: 10.1016/j.porgcoat.2016.04.041
    [17] QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A,2017,5(5):2355-2364.
    [18] ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science,2020,575:140-149. doi: 10.1016/j.jcis.2020.04.097
    [19] ZHANG J J, WEI J F, LI B C, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science,2021,594:836-847. doi: 10.1016/j.jcis.2021.03.005
    [20] ZHANG J L, GU C D, TONG Y Y, et al. A smart superhydrophobic coating on AZ31 B magnesium alloy with self-healing effect[J]. Advanced Materials Interfaces,2016,3(14):1500694-1500703. doi: 10.1002/admi.201500694
    [21] SAHMETLIOGLU E, VAROL R, TOPPARE L, et al. Synthesis and characterization of conducting copolymers of bisphenol A-diglycidyl ether with thiophene side-groups and pyrrole[J]. Journal of Macromolecular Science Part A,2009,46(6):584-590. doi: 10.1080/10601320902851819
    [22] PENCZEK S, KALUZYNSKI K, PRETULA J. Addition of H3PO4 to diglycidyl ethers of bisphenol A: Kinetics and product structure[J]. Journal of Applied Polymer Science,2007,105(1):246-254. doi: 10.1002/app.26087
    [23] XU H D, FAN S H, LU Y, et al. Proposal and verification of a novel superhydrophobic-conductive anti-corrosion polyaniline-silica coating[J]. Bulletin of the Chemical Society of Japan,2020,93(9):1114-1120. doi: 10.1246/bcsj.20200051
    [24] ZHANG D W, QIAN H C, WANG L T, et al. Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments[J]. Corrosion Science,2016,103:230-241. doi: 10.1016/j.corsci.2015.11.023
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  836
  • HTML全文浏览量:  476
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-04-08
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-05-07
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回