留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羧基化多壁碳纳米管改性洋麻纤维对其环氧树脂复合材料界面性能的影响

张洪康 王春红 左祺 李明 王晓云

张洪康, 王春红, 左祺, 等. 羧基化多壁碳纳米管改性洋麻纤维对其环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2022, 39(5): 2153-2160. doi: 10.13801/j.cnki.fhclxb.20210716.002
引用本文: 张洪康, 王春红, 左祺, 等. 羧基化多壁碳纳米管改性洋麻纤维对其环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2022, 39(5): 2153-2160. doi: 10.13801/j.cnki.fhclxb.20210716.002
ZHANG Hongkang, WANG Chunhong, ZUO Qi, et al. Effect of carboxylated multi-walled carbon nanotubes modified kenaf fiber on interfacial properties of epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2153-2160. doi: 10.13801/j.cnki.fhclxb.20210716.002
Citation: ZHANG Hongkang, WANG Chunhong, ZUO Qi, et al. Effect of carboxylated multi-walled carbon nanotubes modified kenaf fiber on interfacial properties of epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2153-2160. doi: 10.13801/j.cnki.fhclxb.20210716.002

羧基化多壁碳纳米管改性洋麻纤维对其环氧树脂复合材料界面性能的影响

doi: 10.13801/j.cnki.fhclxb.20210716.002
基金项目: 国家自然科学基金(11802205);天津市研究生科研创新项目(2020YJSB063)
详细信息
    通讯作者:

    王春红,博士,教授,博士生导师,研究方向为天然纤维及绿色复合材料 E-mail:wangchunhong@tiangong.edu.cn

  • 中图分类号: TB332

Effect of carboxylated multi-walled carbon nanotubes modified kenaf fiber on interfacial properties of epoxy resin composites

  • 摘要: 植物纤维增强复合材料正广泛应用于生活中各领域,但亲水性增强体与疏水性基体之间界面不相容的问题限制了复合材料的力学性能,本论文通过羧基化碳纳米管 (c-MWCNTs) 改性洋麻纤维,探究洋麻纤维/环氧树脂复合材料的界面改善机制。首先利用水和NaOH对洋麻纤维进行预处理,通过观测纤维直径变化、红外光谱图和纤维束断裂强度变化,探讨不同预处理方式对c-MWCNTs接枝洋麻纤维的效果影响;然后使用含量分别为0.5wt%、1wt%和3wt%的c-MWCNTs改性洋麻纤维,通过单纤维抽拔实验,探讨洋麻纤维/环氧树脂复合材料的界面剪切强度 (IFSS) 变化。结果表明,与原洋麻纤维和水预处理过的洋麻纤维相比,经过NaOH处理后的洋麻纤维,直径变化幅度和纤维束断裂强度降低幅度最小,复合材料的尺寸稳定性较高;通过单纤维抽拔实验证明,洋麻纤维/环氧树脂复合材料的界面剪切强度逐渐升高,但是有效性逐渐降低,当c-MWCNTs质量分数为0.5wt%时,c-MWCNTs处理洋麻纤维的有效性最高,达到45.09%;洋麻纤维/环氧树脂复合材料的界面性能得到改善,c-MWCNTs的存在增强了纤维与树脂基体间的机械锁结作用。

     

  • 图  1  羧基化多壁碳纳米管 (c-MWCNTs) 浸渍洋麻纤维工艺流程图

    Figure  1.  Diagram of soak processing of kenaf fiber with carboxylated carbon nanotubes (c-MWCNTs)

    图  2  纤维抽拔样品制备

    Figure  2.  Fiber extraction sample preparation

    图  4  不同方式预处理后洋麻纤维接枝c-MWCNTs的直径变化

    Figure  4.  Diameter changes of c-MWCNTs grafted on kenaf fibers after different pretreatment methods

    图  3  不同方式预处理前后洋麻纤维及接枝c-MWCNTs后的SEM图像对比

    Figure  3.  Compariso of SEM images for kenaf fibers before and after different pretreatments methods and grafted c-MWCNTs

    图  5  不同方式预处理后洋麻纤维接枝c-MWCNTs的FTIR图谱

    Figure  5.  FITR spectra of C-MWCNTs grafted on kenaf fibers after different pretreatment methods

    图  6  c-MWCNTs改性洋麻纤维

    Figure  6.  c-MWCNTs modified kenaf fiber

    图  7  不同方式预处理后洋麻纤维接枝c-MWCNTs的断裂强度

    Figure  7.  Tensile strength of kenaf fiber grafted with c-MWCNTs after different pretreatment methods

    图  8  不同c-MWCNTs含量接枝洋麻纤维的直径分布

    Figure  8.  Diameter distribution of grafted kenaf fibers with different c-MWCNTs content

    图  9  不同质量分数c-MWCNTs处理的洋麻纤维/环氧树脂复合材料的界面剪切强度

    Figure  9.  Interface shear strength of kenaf fiber/epoxy resin composites treated with different c-MWCNTs mass fractions

    图  10  不同质量分数c-MWCNTs对洋麻纤维/环氧树脂复合材料界面剪切强度的有效性影响

    Figure  10.  Effect of c-MWCNTs with different mass fractions on the effectiveness of interfacial shear strength of kenaf fiber/epoxy resin composites

    图  11  洋麻纤维/环氧树脂体系单纤维抽拔破坏模式

    Figure  11.  Single fiber pull-out failure mode of kenaf fiber/epoxy resin system

  • [1] 王春红, 鹿超, 贾瑞婷, 等. 洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能[J]. 复合材料学报, 2020, 37(7):1581-1589.

    WANG Chunhong, LU Chao, JIA Ruiting, et al. The mechanical and moisture absorption properties of kenaf fiber-cotton fiber blended fabric/epoxy resin composites[J]. Journal of Composites,2020,37(7):1581-1589(in Chinese).
    [2] 王春红, 鹿超. 植物纤维结构及其对NFPR界面性能的影响[J]. 纺织导报, 2020, 3:38-43.

    WANG Chunhong, LU Chao. Plant fiber structure and its effect on NFPR interface properties[J]. Textile Report,2020,3:38-43(in Chinese).
    [3] SAMIR M A , ALLOIN F , DUFRESNE A. A review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacro-molecules,2005,6(2):612-626. doi: 10.1021/bm0493685
    [4] LI Y, CHEN C, XU J, et al. Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced compo-sites[J]. Journal of Materials Science,2015,50(3):1117-1128. doi: 10.1007/s10853-014-8668-3
    [5] 合田公一, 曹勇, 吴义强. 麻纤维增强复合材料的研究进展[J]. 材料研究学报, 2008, 22(1):10-17. doi: 10.3321/j.issn:1005-3093.2008.01.002

    HETIAN Gongyi, CAO Yong, WU Yiqiang. Research progress of hemp fiber reinforced composites[J]. Journal of Materials Research,2008,22(1):10-17(in Chinese). doi: 10.3321/j.issn:1005-3093.2008.01.002
    [6] PATEL N, JAIN P. An investigation on mechanical properties in randomly oriented short natural fiber reinforced composites[J]. Materials Today: Proceedings,2021,37(2):469-479.
    [7] 展江湖, 王迎宵, 杨志浩, 等. 苎麻纤维增强聚乳酸复合材料性能研究[J]. 工程科学学报, 2021, 43(7):1-9.

    ZHAN Jianghu, WANG Yingxiao, YANG Zhihao, et al. Study on properties of ramie fiber reinforced polylactic acid composites[J]. Journal of Engineering Science,2021,43(7):1-9(in Chinese).
    [8] 左祺, 费建武, 王春红, 等. 铺层角度对苎麻纤维复合材料性能的影响[J]. 上海纺织科技, 2019, 47(10):71-74.

    ZUO Qi, FEI Jianwu, WANG Chunhong, et al. The effect of laying angle on the properties of ramie fiber composites[J]. Shanghai Textile Technology,2019,47(10):71-74(in Chinese).
    [9] 王春红, 赵玲, 白肃跃, 等. 改进Back Propagation神经网络预测麻纤维/UP复合材料的界面性能[J]. 复合材料学报, 2015, 32(6):1696-1702.

    WANG Chunhong, ZHAO Ling, BAI Suyue, et al. Prediction of interfacial properties of hemp fiber/UP composites by improved back propagation neural network[J]. Journal of Composites,2015,32(6):1696-1702(in Chinese).
    [10] 吴鑫森, 陈祥宝, 宋焕成. 界面层对复合材料强度的影响[J]. 复合材料学报, 1987, 4(4):18-23.

    WU Xinsen, CHEN Xiangbao, SONG Huancheng. Effect of interface layer on strength of composite materials[J]. Journal of Composite Materials,1987,4(4):18-23(in Chinese).
    [11] 赵峰. 含纳米组元界面相对碳纤维/环氧复合材料界面性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    ZHAO Feng. The effect of nano-component interface on the interfacial properties of carbon fiber/epoxy compo-sites[D]. Harbin: Harbin University of Technology, 2011(in Chinese).
    [12] LI X, TABIL L G, PANIGRAHI S. Chemical treatments of natural fiber for use in natural fiber-reinforced compo-sites: A review[J]. Journal of Polymers and the Environment,2007,15(1):25-33. doi: 10.1007/s10924-006-0042-3
    [13] 王戈, 顾少华, 张文福, 等. 植物纤维增强环氧树脂复合材料界面改性研究进展[J]. 中南林业科技大学学报, 2020, 40(7):144-152.

    WANG Ge, GU Shaohua, ZHANG Wenfu, et al. Research progress on interface modification of plant fiber reinforced epoxy resin composites[J]. Journal of Central South University of Forestry and Technology,2020,40(7):144-152(in Chinese).
    [14] IIJIMA S I T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(17):603-605.
    [15] MUNIR K S, WEN C, LI Y. Carbon nanotubes and graphene as nanoreinforcements in metallic biomaterials: A review[J]. Advanced Biosystems,2019,3(3):1800212. doi: 10.1002/adbi.201800212
    [16] LUBINEAU G, RAHAMAN A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements[J]. Carbon,2012,50(7):2377-2395. doi: 10.1016/j.carbon.2012.01.059
    [17] ANNA D K F, ZIJIN C, GUIJUN X. Grafting ramie fiber with carbon nanotube and its effect on the mechanical and interfacial properties of ramie/epoxy composites[J]. Journal of Natural Fibers,2018,16(3):388-403.
    [18] LI Y, HU C, YU Y. Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites[J]. Composites Part A: Applied Science and Manufacturing,2008,39(4):570-578. doi: 10.1016/j.compositesa.2007.07.005
    [19] 中华人民共和国国家质量监督检验检疫总局. 纺织原料细度试验方法(直径)显微投影仪法: SN/T 2672—2010[S]. 北京: 中国标准出版社, 2011

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Microprojector method for fineness test method (diameter) of textile raw materials: SN/T 2672—2010[S]. Beijing: China Standard Publishing House, 2011(in Chinese)
    [20] American Society for Testing Materials. Standard test method for tensile strength and breaking tenacity of wool fiber bundles 1-in. (25.4-mm) Gage length: D1294—95[S]. West Conshohocken: American Society for Testing Materials, 1995.
    [21] WONG S, SHANKS R A, HODZIC A. Effect of additives on the interfacial strength of poly(l-lactic acid) and poly(3-hydroxy butyric acid)-flax fibre composites[J]. Composites Science and Technology,2007,67(11/12):2478-2484. doi: 10.1016/j.compscitech.2006.12.016
    [22] 王灵雪, 费建武, 任子龙. 碱处理对洋麻纤维结构与性能影响研究[J]. 中国纤检, 2018(9):141-144. doi: 10.3969/j.issn.1671-4466.2018.09.042

    WANG Lingxue, FEI Jianwu, REN Zilong. The effect of alkali treatment on the structure and properties of flax fiber[J]. China Fiber Inspection,2018(9):141-144(in Chinese). doi: 10.3969/j.issn.1671-4466.2018.09.042
    [23] LIU L, YU J, CHENG L, et al. Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre[J]. Composites Part A: Applied Science and Manufacturing,2009,40(5):669-674. doi: 10.1016/j.compositesa.2009.03.002
    [24] 韩宁宁, 王训遒, 陈琦, 等. 植物纤维改性方法及其增强复合材料研究进展[J]. 化工新型材料, 2020, 48(3):9-13.

    HAN Ningning, WANG Xunqi, CHEN Qi, et al. Research progress of plant fiber modification methods and their reinforced composites[J]. New Chemical Materials,2020,48(3):9-13(in Chinese).
    [25] 崔运花. 超声波技术在芝麻纤维预处理中的应用[J]. 纺织学报, 1998, 19(6):371-373.

    CUI Yunhua. Application of ultrasonic technology in sesame fiber pretreatment[J]. Journal of Textiles,1998,19(6):371-373(in Chinese).
    [26] SALIM N V, HANLEY T, GUO Q. Microphase separation through competitive hydrogen bonding in double crystalline diblock copolymer/homopolymer blends[J]. Macromolecules,2010,43(18):7695-7704. doi: 10.1021/ma101199w
    [27] 刘芳, 胡国海. 红外吸收光谱基团频率影响因素的验证[J]. 景德镇高专学报, 2010, 25(4):28-30.

    LIU Fang, HU Guohai. Verification of the factors affecting the frequency of infrared absorption spectroscopy group[J]. Journal of Jingdezhen University,2010,25(4):28-30(in Chinese).
    [28] 傅丹宁, 李勉, 叶科丽, 等. 纤维素水解制备葡萄糖的研究进展[J]. 中国造纸学报, 2020, 35(2):81-88.

    FU Danning, LI Mian, YE Keli, et al. Research progress the preparation of glucose by cellulose hydrolysis[J]. Journal of China Paper,2020,35(2):81-88(in Chinese).
    [29] 李岩, 李倩. 植物纤维增强复合材料力学高性能化与多功能化研究[J]. 固体力学学报, 2017, 38(3):215-243.

    LI Yan, LI Qian. Research on mechanical high perfor-mance and multifunction of plant fiber reinforced compo-sites[J]. Journal of Solid Mechanics,2017,38(3):215-243(in Chinese).
    [30] 王婉茹. 苎麻纤维表面碳纳米管接枝改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Wanru. Study on grafting modification of carbon nanotubes on ramie fiber surface[D]. Harbin: Harbin University of Technology, 2018(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  869
  • HTML全文浏览量:  372
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-27
  • 录用日期:  2021-07-07
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回