留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池负极材料研究进展

刘琦 郝思雨 冯东 梅毅 曾天标

刘琦, 郝思雨, 冯东, 等. 锂离子电池负极材料研究进展[J]. 复合材料学报, 2022, 39(4): 1446-1456. doi: 10.13801/j.cnki.fhclxb.20211101.002
引用本文: 刘琦, 郝思雨, 冯东, 等. 锂离子电池负极材料研究进展[J]. 复合材料学报, 2022, 39(4): 1446-1456. doi: 10.13801/j.cnki.fhclxb.20211101.002
LIU Qi, HAO Siyu, FENG Dong, et al. Research progress of anode materials for lithium ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1446-1456. doi: 10.13801/j.cnki.fhclxb.20211101.002
Citation: LIU Qi, HAO Siyu, FENG Dong, et al. Research progress of anode materials for lithium ion battery[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1446-1456. doi: 10.13801/j.cnki.fhclxb.20211101.002

锂离子电池负极材料研究进展

doi: 10.13801/j.cnki.fhclxb.20211101.002
基金项目: 国家自然科学基金(52163007)
详细信息
    通讯作者:

    冯东,讲师,研究方向为锂离子电池 E-mail:fdryan@kust.edu.cn

    梅毅,教授,研究方向为锂离子电池 E-mail:meiyi_412@sina.com

  • 中图分类号: TK9

Research progress of anode materials for lithium ion battery

  • 摘要: 锂离子电池(LIB)因其无记忆效应、环境友好且自放电小等各项优异性能得到了相关研究者的重点关注。信息电子产品、电动汽车和智能电网的发展对高能量密度、长循环寿命和低成本的LIB产生了巨大需求。负极作为LIB的重要组成部分之一,其性能对电池整体的各项指标有重要影响,要求负极所应用的材料具有高比容量和优异的循环性能等特性。传统石墨和钛酸锂(Li4Ti5O12)负极由于比容量偏低,越来越难以满足使用要求,多种新型负极材料的研究开发正如火如荼地进行。金属锂具有非常高的理论比容量,但在反应过程中容易形成枝晶,其商业应用受到限制。除石墨外的碳基负极、硅碳负极和过渡金属化合物也具有较高的理论比容量,且相对于金属锂负极而言更安全,有望在不久的将来实现应用。本文综述了当前国内外LIB负极的研究现状,分析了新型LIB负极的优缺点,指出了LIB负极的研究方向,并对前景作出了展望。

     

  • 图  1  Li4Ti5O12在1.0~3.0 V((a)~(c))和0~3.0 V((d)~(e)) 的储锂性能[31-32]

    Figure  1.  Lithium storage performances of Li4Ti5O12 at 1.0-3.0 V ((a)-(c)) and 0-3.0 V ((d)-(e))[31-32]

    PBA—Prussian blue analogue; rGO—Reduced graphene oxide

    图  2  Fe2O3@C的CV曲线(a)和充放电曲线(b)、Fe2O3@C和Fe2O3在0.2 A·g−1的循环性能(c)、倍率性能(d) 及其在1 A·g−1的循环性能(e)[49]

    Figure  2.  CV curves (a) and discharge/charge curves (b) of Fe2O3@C, cycling performance at 0.2 A·g−1 (c), rate cycling performance (d) and cycle capacities/coulombic efficiency at 1 A·g−1 (e) of Fe2O3@C and Fe2O3[49]

    图  3  Ge/rGO-2的CV曲线(a)、充放电曲线(b) 以及Ge/rGO-1和Ge/rGO-2在1.6 A/g的循环容量/效率曲线(c)[59]

    Figure  3.  CV curves (a) and discharge/charge curves (b) of Ge/rGO-2, as well as cycling performance of Ge/rGO-1 and Ge/rGO-2 at 1.6 A/g (c)[59]

    图  4  Sn4P3/C的储锂性能[65]

    Figure  4.  Lithium storage performances of Sn4P3/C[65]

    表  1  贝特瑞公司官网2020年上半年公布的SiOx/C负极参数

    Table  1.   Parameters of SiOx/C anodes declared on official website of Beiteri New Material Group Co., Ltd. in the first half of 2020

    ComponentProduct
    name
    D50/μmTap density/
    (g·cm3)
    Specific surface area/
    (m2·g−1)
    Compaction
    density/
    (g·cm3)
    0.1 C
    capacity/
    (mA·h·g−1)
    First time efficiency/
    %
    Si/CS40015.0-19.00.8-1.01.0-4.01.5-1.8400-49992-94
    S50015.0-19.00.8-1.01.0-4.01.5-1.7500-59990-92
    S60015.0-19.00.8-1.01.0-4.01.4-1.7600-65089-90
    SiO/CS420-2A16.0±2.00.9±0.1<2.0≥1.7≥42092.5±1.0
    S450-2A15.0±2.00.9±0.1<2.0≥1.7≥45091.5±1.0
    S500-2A15.0±2.00.9±0.1<2.0≥1.7≥50090.0 ±1.0
    Note: D50—Particle size corresponding to a sample whose cumulative percentage of particle size distribution reaches 50%.
    下载: 导出CSV
  • [1] QIAN G, LIAO X, ZHU Y, et al. Designing flexible lithium-ion batteries by structural engineering[J]. ACS Energy Letters,2019,4:690-701. doi: 10.1021/acsenergylett.8b02496
    [2] ZHAO B, RAN R, LIU M, et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives[J]. Materials Science and Engineering: R: Reports,2015,98:1-71. doi: 10.1016/j.mser.2015.10.001
    [3] MORADI B, BOTTE G G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry,2015,46:123-148.
    [4] CHANG X, LI W, YANG J, et al. Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3:3522-3528. doi: 10.1039/C4TA06334A
    [5] YOSHIO M, WANG H Y, FUKUDA K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere[J]. Journal of Materials Chemistry,2004,14:1754-1758. doi: 10.1039/b316702j
    [6] JIAN Z M, LIU H B, KUANG J C, et al. Natural flake graphite modified by mild oxidation and carbon coating treatment as anode material for lithium ion batteries[J]. Chinese Materials Conference,2012:55-62.
    [7] HE W J, ZHANG T F, JIANG J M, et al. Efficient synthesis of N-doped SiOx/C composite based on the defect-enriched graphite flake for lithium-ion battery[J]. ACS Applied Energy Materials,2020,3:4394-4402.
    [8] WU X, YANG X, ZHANG F, et al. Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries[J]. Ceramics International,2017,43:9458-9464. doi: 10.1016/j.ceramint.2017.04.123
    [9] WU Y P, JIANG C, WAN C, et al. Anode materials for lithium ion batteries from mild oxidation of natural graphite[J]. Journal of Applied Electrochemistry,2002,32:1011-1017. doi: 10.1023/A:1020954317240
    [10] SUN Y L, HAN F, ZHANG C. Z, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technology,2019,7:1801091. doi: 10.1002/ente.201801091
    [11] 李新禄, 徐灿, 康飞宇, 等. 微晶石墨用作锂离子电池负极材料的研究[C]//第八届全国新型炭材料学术研讨会论文集. 2007: 590-591.

    LI X L, XU C, KANG F Y, et al. Study on the application of microcrystalline ink as anode material for lithium ion battery[C]//Proceedings of the 8th National Symposium on New Carbon Materials. 2007: 590-591(in Chinese).
    [12] WANG C, ZHAO H, WANG J, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries[J]. Ionics,2012,19:221-226.
    [13] WU Y S, YEH T S, LEE Y H, et al. Spheroidization modification of artificial graphite applied as anode materials for high rate lithium ion batteries[J]. Advanced Materials Research,2011,201:421-424.
    [14] WOTANGO A S, SU W N, HAREGEWOIN A M, et al. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance[J]. ACS Applied Materials & Interfaces,2018,10:25252-25262.
    [15] GHOLAMI M, ZAREI-JELYANI M, BABAIEE M, et al. Physical vapor deposition of TiO2 nanoparticles on artificial graphite: An excellent anode for high rate and long cycle life lithium-ion batteries[J]. Ionics,2020,26:4391-4399. doi: 10.1007/s11581-020-03579-5
    [16] GUO A, WANG F, JIAO S, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by thermal polymerization of a distillate fraction from an FCC slurry oil after hydrofining with suspended catalyst[J]. Fuel,2020,276:118037. doi: 10.1016/j.fuel.2020.118037
    [17] LV J H, DU J T, JIA H N, et al. Hierarchical carbon-coated Fe1-xS/mesocarbon microbeads composite as high-performance lithium-ion batteries anode[J]. Ceramics International,2020,46:9485-9491. doi: 10.1016/j.ceramint.2019.12.209
    [18] LIU H T, SHAN Z Q, HUANG W L, et al. Self-assembly of silicon@oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10:4715-4725.
    [19] DI L D, VERRELLI R, CAMPANELLA D, et al. A new CuO-Fe2O3-mesocarbon microbeads conversion anode in a high-performance lithium-ion battery with a Li1.35Ni0.48Fe0.1Mn1.72O4 spinel cathode[J]. ChemSusChem,2017,10:1607-1615. doi: 10.1002/cssc.201601638
    [20] 郭明, 王金才, 吴连波, 等. 锂离子电池负极 材料纳米碳纤维研究[J]. 电池, 2004:384-385. doi: 10.3969/j.issn.1001-1579.2004.05.030

    GUO M, WANG J C, WU L B, et al. Study on carbon nano-fibers as anode material for lithium ion batteries[J]. Battery,2004:384-385(in Chinese). doi: 10.3969/j.issn.1001-1579.2004.05.030
    [21] ZUO T T, WU X W, YANG C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials,2017,29:1700389. doi: 10.1002/adma.201700389
    [22] GOMEZ-MARTIN A, MARTINEZ-FERNANDEZ J, RUTTERT M, et al. Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries[J]. ChemSusChem,2018,11:2776-2787. doi: 10.1002/cssc.201800831
    [23] LUO J, WU C E, SU L Y, et al. A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating[J]. Journal of Power Sources,2018,406:63-69. doi: 10.1016/j.jpowsour.2018.10.002
    [24] 李巧霞, 毛宏敏, 刘明爽, 等. 锂离子电池硬碳负极材料的现状及展望[J]. 上海电力学院学报, 2014, 30:75-78.

    LI Q X, MAO H M, LIU M S, et al. Present situation and prospect of hard carbon anode materials for lithium ion batteries[J]. Journal of Shanghai Institute of Electric Power,2014,30:75-78(in Chinese).
    [25] ZHANG X X, QU H N, JI W X, et al. Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12:11589-11599.
    [26] ZUO J L, GUO Y. Formation of hard carbon derived from sulfonated pitch as advanced electrodes for lithium-ion batteries[J]. International Journal of Electrochemical Science,2020,15:3196-3203.
    [27] LIAO Y, HU J, ZHOU X. Porous hard carbon microtubes from renewable cotton as high-performance anode material for lithium-ion batteries[J]. Journal of Materials Science-Materials in Electronics,2021,32:1-10.
    [28] YU P, TANG W, WU F F, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review[J]. Rare Metals,2020,39:1019-1033. doi: 10.1007/s12598-020-01443-z
    [29] KIM J H, JUNG M J, KIM M J, et al. Electrochemical performances of lithium and sodium ion batteries based on carbon materials[J]. Journal of Industrial and Engineering Chemistry,2018,61:368-380. doi: 10.1016/j.jiec.2017.12.036
    [30] ZHONG Z, OUYANG C, SHI S, et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries[J]. Chemphyschem,2008,9:2104-2108. doi: 10.1002/cphc.200800333
    [31] LI Y N, CHEN Q L, MENG Q Q, et al. Synergy of a hierarchical porous morphology and anionic defects of nanosized Li4Ti5O12 toward a high-rate and large-capacity lithium-ion battery[J]. Journal of Energy Chemistry,2021,54:699-711. doi: 10.1016/j.jechem.2020.06.049
    [32] SUN D M, ZHANG H, WANG H, et al. High capacity prussian blue analogue@reduced graphene oxide/Li4Ti5O12 composite as an anode material for lithium-ion batteries with a broad voltage window[J]. International Journal of Electrochemical Science,2019,14:5581-5593.
    [33] HAN C P, HE Y B, LIU M, et al. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries[J]. Journal of Materials Chemistry A,2017,5:6368-6381. doi: 10.1039/C7TA00303J
    [34] LV W Q, GU J M, NIU Y H, et al. Review-gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries[J]. Journal of The Electrochemical Society,2017,164:A2213-A2224. doi: 10.1149/2.0031712jes
    [35] EHRLICH G, FRAGNAUD P, HOFFART L, et al. Thin film lithium ion cells prepared by chemical processes[J]. Proceedings of the Symposium on Thin Film Solid Ionic Devices and Materials,1996:153-163.
    [36] LIN X, PAN F, WANG H. Progress of Li4Ti5O12 anode material for lithium ion batteries[J]. Materials Technology,2014,29:A82-A87. doi: 10.1179/1753555714Y.0000000170
    [37] TU W M, BAI Z Y, DENG Z, et al. In-situ synthesized Si@C materials for the lithium ion battery: A mini review[J]. Nanomaterials,2019,9:432. doi: 10.3390/nano9030432
    [38] ZHANG Y, ZHU Y S, FU L J, et al. Si/C composites as negative electrode for high energy lithium ion batteries[J]. Chinese Journal of Chemistry,2017,35:21-29. doi: 10.1002/cjoc.201600663
    [39] MA J, TAN H, LIU H, et al. Facile and scalable synthesis of Si@void@C embedded in interconnected 3D porous carbon architecture for high performance lithium-ion batteries[J]. Particle & Particle Systems Characterization,2021,38:2000288.
    [40] XIE S, JI Q, XIA Y, et al. Mutual performance enhancement within dual N-doped TiO2/Si/C nanohybrid lithium-ion battery anode[J]. ChemistrySelect,2021,6:141-153. doi: 10.1002/slct.202004054
    [41] MULLER J, ABDOLLAHIFAR M, VINOGRAD A, et al. Si-on-graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries[J]. Chemical Engineering Journal,2021,407:126603. doi: 10.1016/j.cej.2020.126603
    [42] YANG H N, JI S J, YIN J P, et al. Petal-like metal-organic framework stabilized Si@C with long cycle life and excellent kinetics[J]. Journal of Colloid and Interface Science,2021,586:381-390. doi: 10.1016/j.jcis.2020.10.102
    [43] CHEN Y, YAN Y, LIU X, et al. Porous Si/Fe2O3 dual network anode for lithium-ion battery application[J]. Nanomaterials,2020,10:2331. doi: 10.3390/nano10122331
    [44] LIU B, XU G, JIN C, et al. The Si/Ag2Si/Ag particles with the enhanced mechanical contact as anode material for lithium ion batteries[J]. Materials Letters,2020,280:128536. doi: 10.1016/j.matlet.2020.128536
    [45] ZHU X Q, SHEN J L, CHEN X F, et al. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries[J]. Chemical Engineering Journal,2019,378:122212. doi: 10.1016/j.cej.2019.122212
    [46] HAASCH R T, ABRAHAM D P. Si-based materials for lithium-ion batteries II. Surface-modified Si/C/polyethylene glycol powder[J]. Surface Science Spectra,2020,27:014009. doi: 10.1116/1.5130766
    [47] LU Y, YU Y, LOU X W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries[J]. Chem,2018,4:972-996. doi: 10.1016/j.chempr.2018.01.003
    [48] WU F X, YUSHIN G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science,2017,10:435-459.
    [49] ZHENG Z M, LI P, HUANG J S, et al. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design[J]. Journal of Energy Chemistry,2020,41:126-134. doi: 10.1016/j.jechem.2019.05.009
    [50] KEPPELER M, SRINIVASAN M. Interfacial phenomena/capacities beyond conversion reaction occurring in nano-sized transition-metal-oxide-based negative electrodes in lithium-ion batteries: A review[J]. ChemElectroChem,2017,4:2727-2754. doi: 10.1002/celc.201700747
    [51] DWIVEDI P K, NAIR A, MEHARE R S, et al. Experimental and theoretical investigations of the effect of heteroatom-doped carbon microsphere supports on the stability and storage capacity of nano-Co3O4 conversion anodes for application in lithium-ion batteries[J]. Nanoscale Advances,2020,2:2914-2924. doi: 10.1039/D0NA00261E
    [52] ALI A, HANTANASIRISAKUL K, ABDALA A, et al. Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries[J]. Langmuir,2018,34:11325-11334. doi: 10.1021/acs.langmuir.8b01953
    [53] HU T, XIE M, ZHONG J, et al. Porous Fe2O3 nanorods anchored on nitrogen-doped graphenes and ultrathin Al2O3 coating by atomic layer deposition for long-lived lithium ion battery anode[J]. Carbon,2014,76:141-147. doi: 10.1016/j.carbon.2014.04.060
    [54] LI X F, WANG C L. Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application[J]. Journal of Materials Che-mistry A,2013,1:165-182. doi: 10.1039/C2TA00437B
    [55] HE J, WEI Y Q, ZHAI T Y, et al. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries[J]. Materials Chemistry Frontiers,2018,2:437-455. doi: 10.1039/C7QM00480J
    [56] GORIPARTI S, MIELE E, DE ANGELIS F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources,2014,257:421-443. doi: 10.1016/j.jpowsour.2013.11.103
    [57] LI J, NIU Z, GUO C, et al. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review[J]. Journal of Energy Chemistry,2021,54:434-451. doi: 10.1016/j.jechem.2020.06.009
    [58] YOO K, BANERJEE S, KIM J, et al. A review of lithium-air battery modeling studies[J]. Energies,2017,10:1-42.
    [59] WANG B, JIN J, RUI K, et al. Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage[J]. Journal of Power Sources,2018,396:124-133. doi: 10.1016/j.jpowsour.2018.06.024
    [60] LIU X Y, LIN N, CAI W L, et al. Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries[J]. Dalton Transactions,2018,47:7402-7406. doi: 10.1039/C8DT01060A
    [61] LIANG S Z, CHENG Y J, ZHU J, et al. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes[J]. Small Methods,2020,4:2000218. doi: 10.1002/smtd.202000218
    [62] PALACIN M R. Recent advances in rechargeable battery materials: A chemist's perspective[J]. Chemical Society Reviews,2009,38:2565-2575. doi: 10.1039/b820555h
    [63] KIM H J, KRISHNA T N V, ZEB K, et al. A comprehensive review of Li-ion battery materials and their recycling techniques[J]. Electronics,2020,9:1161. doi: 10.3390/electronics9071161
    [64] LI W W, LI X W, YU J L, et al. A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy[J]. Nano Energy,2019,61:594-603. doi: 10.1016/j.nanoen.2019.04.080
    [65] LIU Z L, WANG X X, WU Z Y, et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries[J]. Nano Research,2020,13:3157-3164. doi: 10.1007/s12274-020-2987-2
    [66] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature nanotechnology,2017,12(3):194-206. doi: 10.1038/nnano.2017.16
    [67] PARK S, JIN H J, YUN Y S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes[J]. Advanced Materials,2020,32(51):200219.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  4338
  • HTML全文浏览量:  1078
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-09-27
  • 录用日期:  2021-10-26
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回