留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶骨料碱性砂浆孔结构与抗压性能非线性回归模型

施宇航 马芹永 徐子芳 马冬冬 黄坤

施宇航, 马芹永, 徐子芳, 等. 橡胶骨料碱性砂浆孔结构与抗压性能非线性回归模型[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 施宇航, 马芹永, 徐子芳, 等. 橡胶骨料碱性砂浆孔结构与抗压性能非线性回归模型[J]. 复合材料学报, 2022, 40(0): 1-10
Yuhang SHI, Qinyong MA, Zifang XU, Dongdong MA, Kun HUANG. Nonlinear regression models of compressive performance and pore structure of rubber aggregate alkaline mortar[J]. Acta Materiae Compositae Sinica.
Citation: Yuhang SHI, Qinyong MA, Zifang XU, Dongdong MA, Kun HUANG. Nonlinear regression models of compressive performance and pore structure of rubber aggregate alkaline mortar[J]. Acta Materiae Compositae Sinica.

橡胶骨料碱性砂浆孔结构与抗压性能非线性回归模型

基金项目: 安徽高校协同创新项目(GXXT-2019-005)
详细信息
    通讯作者:

    马芹永,博士,教授,博士生导师,研究方向为新型建筑材料 E-mail: qymaah@126.com

  • 中图分类号: TB332

Nonlinear regression models of compressive performance and pore structure of rubber aggregate alkaline mortar

  • 摘要: 废旧轮胎的弃置会导致诸多环境问题,而粉碎制得的橡胶粉可在建筑砂浆中替代细骨料。砂浆中橡胶骨料的掺量和粒径是橡胶混凝土强度的主要影响因素,利用碱激发矿渣材料可替代普通硅酸盐水泥,提升砂浆的环境友好性。研究多因素耦合作用对橡胶骨料砂浆抗压性能的影响,通过测试砂浆的抗压强度,对试验结果进行显著性分析及多元非线性回归,建立了多因素与砂浆抗压强度的多元非线性回归模型。对砂浆试样进行细观孔隙测量和SEM表征,探究橡胶骨料对砂浆抗压强度的劣化机制。结果表明:砂浆中橡胶骨料掺量的提升会造成砂浆抗压强度的下降,40vol%骨料替代率下碱激发类砂浆抗压强度均值相比对照组降低了49.93%,硅酸盐类降低了66.62%;在碱激发类砂浆的高碱性环境下,使用0.38 mm粒径橡胶骨料的砂浆抗压强度均值为对照组的69.65%,取得试验组中最优值;而在硅酸盐类砂浆的低碱性环境中,随着橡胶骨料粒径的减小,砂浆抗压强度均值由对照组的61.46%降至37.98%。

     

  • 图  1  废旧轮胎橡胶骨料

    Figure  1.  Waste tire rubber aggregate

    图  2  硬化混凝土气孔结构分析仪

    Figure  2.  Stomatal structure analyzer for hardened concrete

    图  3  激发剂pH值因素影响下的碱激发类砂浆抗压强度对比

    Figure  3.  Comparison of alkali-activate mortar compressive strength under the influence of pH value of activator

    图  4  橡胶骨料粒径因素影响下的碱激发类砂浆抗压强度对比

    Figure  4.  Comparison of alkali-activate mortar compressive strength under the influence of rubber aggregate particle size

    图  5  硅酸盐类砂浆抗压强度对比

    Figure  5.  Compressive strength comparison of silicate mortar

    图  6  硅酸盐类与碱激发类砂浆抗压强度均值对比

    Figure  6.  Comparison of mean compressive strength of silicate mortar and alkali-activated mortar

    图  7  碱激发类砂浆的微观形貌SEM图像(1 mm~10 μm)

    Figure  7.  SEM images of alkali-activated mortar (1 mm~10 μm)

    图  8  碱激发类砂浆的孔隙形貌

    Figure  8.  Pore morphologies of alkali-activated mortars

    图  9  硅酸盐类砂浆的孔隙形貌

    Figure  9.  Pore morphologies of silicate mortar

    图  10  碱激发类砂浆因素相关系数矩阵

    Figure  10.  Correlation coefficient matrix of alkali-activated mortar's factors

    图  11  碱激发类砂浆非线性回归模型

    Figure  11.  Nonlinear regression model of alkali-activated mortar

    图  12  硅酸盐类砂浆因素相关系数矩阵

    Figure  12.  Correlation coefficient matrix of silicate mortar's factors

    图  13  硅酸盐类砂浆非线性回归模型

    Figure  13.  Nonlinear regression model of silicate mortar

    表  1  高炉矿渣主要氧化物成分

    Table  1.   Main oxide components of blast furnace slag

    Oxide componentCaOSiO2Al2O3MgOSO3TiO2Fe2O3
    Content/wt%49.5125.6113.235.512.342.1310.421
    下载: 导出CSV

    表  2  碱激发类砂浆变量名称分类

    Table  2.   Designation and classification of alkali-activated mortar group's variables

    FactorSymbol of variableLevelDesignation
    pH value of sodium
    hydroxide solution
    J11pH14.3
    2pH14.5
    3pH14.6
    Volume substitution
    rate of rubber aggregate
    C1110vol%
    220vol%
    330vol%
    440vol%
    Particle size of
    rubber aggregate
    L111.7 mm
    20.83 mm
    30.38 mm
    40.25 mm
    50.15 mm
    下载: 导出CSV

    表  3  硅酸盐类砂浆变量名称分类

    Table  3.   Designation and classification of silicate mortar group's variables

    FactorSymbols of variableLevelDesignation
    Volume substitution
    rate of rubber aggregate
    C2110vol%
    220vol%
    330vol%
    440vol%
    Particle size of
    rubber aggregate
    L211.7 mm
    20.83 mm
    30.38 mm
    40.25 mm
    50.15 mm
    下载: 导出CSV

    表  4  碱激发类砂浆因素显著性分析

    Table  4.   Significance analysis of alkali-activated mortar's factors

    SourceSum of squaresDegree of freedomMean squareF-valueSignificance
    J11464.3882732.194758.883***
    L1171.936442.98444.551***
    C12313.3273771.109799.216***
    J1 * L123.36482.923.027***
    L1 * C113.789121.1491.191//
    J1 * C1160.447626.74127.716***
    J1 * L1 * C120.204240.8420.873***
    Error115.781200.965
    Total74288.445180
    Notes:“***” means the significant factor; “//” means the not significant factor.
    下载: 导出CSV

    表  5  硅酸盐类砂浆因素显著性分析

    Table  5.   Significance analysis of silicate mortar's factors

    SourceSum of squaresDegree of
    freedom
    Mean
    square
    F-ValueSignificance
    L2391.441497.8661.322***
    C21173.3073391.102245.077***
    L2 * C272.638126.0533.793***
    Error63.833401.596
    Total16296.5860
    Notes:“***” means the significant factor
    下载: 导出CSV
  • [1] 姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12):4294-4304.

    YAO WJ, LIU YS, WANG TY, et al. Performance degradation and microscopic structure of rubber/concrete after salt freeze-thaw cycles[J]. Acta Materiae Compositae Sinica,2021,38(12):4294-4304(in Chinese).
    [2] BRAVO M, DE BRITO J. Concrete made with used tyre aggregate: durability-related performance[J]. Journal of Cleaner Production,2012,25:42-50. doi: 10.1016/j.jclepro.2011.11.066
    [3] SIDDIKA A, AL MAMUN M A, ALYOUSEF R, et al. Properties and utilizations of waste tire rubber in concrete: A review[J]. Construction and Building Materials,2019,224:711-731. doi: 10.1016/j.conbuildmat.2019.07.108
    [4] KHALOOA R, DEHESTANI M, RAHMAYABADI P. Mechanical properties of concrete containing a high volume of tire–rubber particles[J]. Waste management,2008,28(12):2472-2482. doi: 10.1016/j.wasman.2008.01.015
    [5] GIRSKAS G, NAGROCKIENĖ D. Crushed rubber waste impact of concrete basic properties[J]. Construction and Building Materials,2017,140:36-42. doi: 10.1016/j.conbuildmat.2017.02.107
    [6] GUPTA T, CHAUDHARY S, SHARMA R K. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate[J]. Construction and building Materials,2014,73:562-574. doi: 10.1016/j.conbuildmat.2014.09.102
    [7] INCE C, SHEHATA B M H, DEROGAR S, et al. Towards the development of sustainable concrete incorporating waste tyre rubbers: A long-term study of physical, mechanical & durability properties and environmental impact[J]. Journal of Cleaner Production,2022,334:130223. doi: 10.1016/j.jclepro.2021.130223
    [8] VALENTE M, SAMBUCCI M, CHOUGAN M, et al. Reducing the emission of climate-altering substances in cementitious materials: A comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tire rubber[J]. Journal of Cleaner Production,2022,333:130013. doi: 10.1016/j.jclepro.2021.130013
    [9] SHAO J, ZHU H, XUE G, et al. Mechanical and restrained shrinkage behaviors of cement mortar incorporating waste tire rubber particles and expansive agent[J]. Construction and Building Materials,2021,296:123742. doi: 10.1016/j.conbuildmat.2021.123742
    [10] LIU M, LU J, MING P, et al. Study of fracture properties and post-peak softening process of rubber concrete based on acoustic emission[J]. Construction and Building Materials,2021,313:125487. doi: 10.1016/j.conbuildmat.2021.125487
    [11] SHAO J, ZHU H, ZHAO B, et al. Combined effect of recycled tire rubber and carbon nanotubes on the mechanical properties and microstructure of concrete[J]. Construction and Building Materials,2022,322:126493. doi: 10.1016/j.conbuildmat.2022.126493
    [12] GRAVINA R J, XIE T. Toward the development of sustainable concrete with Crumb Rubber: Design-oriented Models, Life-Cycle-Assessment and a site application[J]. Construction and Building Materials,2022,315:125565. doi: 10.1016/j.conbuildmat.2021.125565
    [13] NOCERA F, WANG J, FALESCHINI F, et al. Probabilistic models of concrete compressive strength and elastic modulus with rubber aggregates[J]. Construction and Building Materials,2022,322:126145. doi: 10.1016/j.conbuildmat.2021.126145
    [14] AL-FASIH M Y M, HUSEIEN G F, BIN IBRAHIM I S, et al. Synthesis of rubberized alkali-activated concrete: experimental and numerical evaluation[J]. Construction and Building Materials,2021,303:124526. doi: 10.1016/j.conbuildmat.2021.124526
    [15] SOUZA T B, LIMA V M E, ARAÚJO F W C, et al. Alkali-activated slag cellular concrete with expanded polystyrene (EPS)–physical, mechanical, and mineralogical properties[J]. Journal of Building Engineering,2021,44:103387. doi: 10.1016/j.jobe.2021.103387
    [16] WANG H, WU Y, CHENG B. Mechanical properties of alkali-activated concrete containing crumb rubber particles[J]. Case Studies in Construction Materials,2022,16:e00803. doi: 10.1016/j.cscm.2021.e00803
    [17] KONG L, ZHAO W, XUAN D, et al. Application potential of alkali-activated concrete for antimicrobial induced corrosion: A review[J]. Construction and Building Materials,2022,317:126169. doi: 10.1016/j.conbuildmat.2021.126169
    [18] BANDYOPADHYAY S, DE P P, TRIPATHY D K, et al. Influence of surface oxidation of carbon black on its interaction with nitrile rubbers[J]. Polymer,1996,37(2):353-357. doi: 10.1016/0032-3861(96)81110-4
    [19] DOU Y, FENG G, XU L, et al. Modification of rubber particles and its application in rubberized concrete[J]. Journal of Building Engineering,2022:104346.
    [20] FU Q, BU M, ZHANG Z, et al. Hydration characteristics and microstructure of alkali-activated slag concrete: A review[J]. Engineering, 2021.
    [21] SEGRE N, MONTEIRO P J M, SPOSITO G. Surface characterization of recycled tire rubber to be used in cement paste matrix[J]. Journal of colloid and interface science,2002,248(2):521-523. doi: 10.1006/jcis.2002.8217
    [22] AMRAN M, FEDIUK R, ABDELGADER H S, et al. Fiber-reinforced alkali-activated concrete: A review[J]. Journal of Building Engineering,2022,45:103638. doi: 10.1016/j.jobe.2021.103638
    [23] MOHAMMED A, RAFIQ S, SIHAG P, et al. ANN, M5 P-tree and nonlinear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash[J]. Journal of Materials Research and Technology,2020,9(6):12416-12427. doi: 10.1016/j.jmrt.2020.08.083
    [24] GOLAFSHANI E M, BEHNOOD A, ARASHPOUR M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer[J]. Construction and Building Materials,2020,232:117266. doi: 10.1016/j.conbuildmat.2019.117266
    [25] XIAO Y, MENG M, CHEN H, et al. Nonlinear regression model for peak-failure strength of rockfill materials in general stress space[J]. Geoscience Frontiers,2018,9(6):1699-1709. doi: 10.1016/j.gsf.2017.07.001
    [26] XU J, ZHAO X, YU Y, et al. Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks[J]. Construction and Building Materials,2019,211:479-491. doi: 10.1016/j.conbuildmat.2019.03.234
    [27] ASTM C109/C109 M-02: Standard test method for compressive strength of hydraulic cement mortars[S]. ASTM International, West Conshohocken , 2011.
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-05-14
  • 修回日期:  2022-04-24
  • 网络出版日期:  2022-05-28

目录

    /

    返回文章
    返回