留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸盐侵蚀环境对CFRP-粘土砖界面粘结性能的影响

聂丹 靳文强 董磊 赵坤 张家玮

聂丹, 靳文强, 董磊, 等. 硫酸盐侵蚀环境对CFRP-粘土砖界面粘结性能的影响[J]. 复合材料学报, 2023, 40(9): 5276-5287. doi: 10.13801/j.cnki.fhclxb.20230105.001
引用本文: 聂丹, 靳文强, 董磊, 等. 硫酸盐侵蚀环境对CFRP-粘土砖界面粘结性能的影响[J]. 复合材料学报, 2023, 40(9): 5276-5287. doi: 10.13801/j.cnki.fhclxb.20230105.001
NIE Dan, JIN Wenqiang, DONG Lei, et al. Effect of sulfate erosion on the bonding performance of CFRP-clay brick interface[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5276-5287. doi: 10.13801/j.cnki.fhclxb.20230105.001
Citation: NIE Dan, JIN Wenqiang, DONG Lei, et al. Effect of sulfate erosion on the bonding performance of CFRP-clay brick interface[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5276-5287. doi: 10.13801/j.cnki.fhclxb.20230105.001

硫酸盐侵蚀环境对CFRP-粘土砖界面粘结性能的影响

doi: 10.13801/j.cnki.fhclxb.20230105.001
基金项目: 甘肃省建设科技攻关项目(JKR2021-07)
详细信息
    通讯作者:

    靳文强,博士,副教授,硕士生导师,研究方向为工程结构加固与性能提升 E-mail: 724813656@qq.com

  • 中图分类号: TU362;TB333

Effect of sulfate erosion on the bonding performance of CFRP-clay brick interface

Funds: Gansu Province Construction Science and Technology Tackling Project (JKR2021-07)
  • 摘要: 为探究硫酸盐浸泡环境下碳纤维增强复合材料(CFRP)-粘土砖界面粘结性能退化规律,试验采用质量分数为10wt%的硫酸盐溶液对CFRP-粘土砖试件进行加速腐蚀,并对材料性能进行测定,通过采集应变、承载力等参数,分析CFRP与粘土砖界面承载力能力与粘结强度变化规律。研究表明:硫酸浸泡对CFRP片材和树脂胶的力学性能无显著影响,但对粘土砖的抗压强度有明显影响,经过180天硫酸盐浸泡后,粘土砖抗压强度下降了34.50%。对于CFRP-粘土砖界面的极限承载力与粘结强度,研究发现CFRP的宽度对界面承载力和粘结强度均有影响,增加界面的宽度,可以增加界面的承载能力,但界面粘结强度会因此而下降,且粘结宽度越大,在硫酸盐持续浸泡作用下界面粘结性能退化越显著。在试验基础上引入硫酸盐综合影响系数,并对其采用两种不同方式进行计算,建立考虑硫酸盐浸泡影响的CFRP-粘土砖界面承载力关系模型,通过与试验值对比,本文提出的CFRP-粘土砖界面承载力能关系模型能够很好地预测硫酸盐持续浸泡对CFRP-粘土砖界面承载力退化情况。

     

  • 图  1  试件尺寸

    Figure  1.  Size of specimen

    CFRP—Carbon fiber reinforced composite

    图  2  材料性能试验装置

    Figure  2.  Material property test device

    图  3  单剪试件示意图

    Figure  3.  Schematic diagram of single shear specimen

    bf—Width of CFRP

    图  4  应变片布置图

    Figure  4.  Strain gauge arrangement

    b—Width of brick; Lf—Bond length; tf—Thickness of CFRP

    图  5  加载装置

    Figure  5.  loading device

    P—Applied load

    图  6  硫酸盐浸泡下粘土砖抗压强度变化规律

    Figure  6.  Change pattern of compressive strength of clay bricks under sulfate immersion

    图  7  各浸泡周期下CFRP-粘土砖试件的破坏形态

    Figure  7.  Damage patterns of CFRP-clay brick specimens under soaking cycle

    图  8  CFRP-粘土砖界面承载力变化趋势

    Figure  8.  Trend of bearing capacity of CFRP-clay brick interface

    图  9  CFRP-粘土砖界面承载力和粘结强度对比

    Figure  9.  Comparison of bearing capacity and bonding strength of CFRP-clay brick interface

    图  10  各浸泡周期下CFRP-粘土砖试件荷载-滑移曲线

    Figure  10.  Load-slip curves of CFRP-clay brick specimens at each immersion cycle

    图  11  不同粘结宽度CFRP-粘土砖极限承载力与硫酸盐侵蚀时间的关系曲线

    Figure  11.  Ultimate bearing capacity and sulfate immersion cycle relationship curves of CFRP-clay brick specimens with different bond widths

    Pu(x)/Pu(0)—Ratio of the ultimate load capacity of the specimen under different sulfate immersion cycles to the ultimate load capacity under room temperature conditions

    图  12  CFRP-粘土砖极限承载力拟合曲线

    Figure  12.  Ultimate bearing capacity fitting curve of CFRP-clay brick

    图  13  CFRP-粘土砖承载力试验值与计算值误差分析

    Figure  13.  Error analysis between the test value of load bearing capacity and the calculated value of CFRP-clay brick

    Pu(test)/Pu(cal)—Ratio of the test value to the calculated value of ultimate bearing capacity

    表  1  两种粘结宽度试件承载能力与粘结强度的变化幅度

    Table  1.   1Changes of bearing capacity and bond strength of specimens with two bond widths

    Soaking cycle/dAverage ultimate bearing capacity/kNChange/%Average bond strength/MPaChange/%
    70mm wide specimen50mm wide specimen70mm wide specimen50mm wide specimen
    016.3712.05-26.4228.1240.9+5.3
    3014.1210.63-24.7201.7212.6+5.1
    6012.9610.31-18.1185.1206.2+12.8
    9012.1110.14-16.3173.0202.7+14.7
    12011.549.67-16.2164.9193.5+14.8
    15010.879.32-14.2155.3186.4+16.7
    18010.238.85-13.5146.1177.0+17.5
    Note: “-” represents a decrease, “+”represents an increase.
    下载: 导出CSV

    表  1  硫酸盐浸泡下CFRP和树脂胶力学性能

    Table  1.   Mechanical properties of CFRP and resin adhesive under sulfate immersion

    MaterialSoaking
    cycle/d
    Tensile
    strength/MPa
    Change/%Modulus of
    elasticity/GPa
    Change/%Elongation/%Change/%
    CFRP 0 3573 264.8 1.666
    30 3557 −0.45 263.2 −0.60 1.645 −1.26
    60 3518 −1.54 262.9 −0.72 1.630 −2.16
    90 3485 −2.46 261.8 −1.13 1.612 −3.24
    120 3463 −3.08 260.9 −1.47 1.604 −3.72
    150 3447 −3.53 260.5 −1.62 1.593 −4.38
    180 3427 −4.09 259.6 −1.96 1.589 −4.62
    Resin glue 0 58.917 2707 2.294
    30 59.006 +0.15 2770 +2.33 2.354 +2.62
    60 57.926 −1.68 2628 −2.92 2.254 −1.74
    90 57.434 −2.52 2639 −2.51 2.241 −2.31
    120 55.983 −4.98 2610 −3.58 2.205 −3.88
    150 55.794 −5.30 2604 −3.80 2.202 −4.01
    180 55.262 −6.20 2589 −4.36 2.165 −5.62
    Notes: The magnitude of change is compared with the results under 0 immersion cycles (room temperature conditions); “−”—Decrease; “+”—Increase.
    下载: 导出CSV

    表  2  各浸泡周期下CFRP-粘土砖试件基本参数及试验结果

    Table  2.   Basic parameters and test results of CFRP-clay brick specimens under each immersion cycle

    Soaking
    cycle/d
    Bonding
    width/mm
    Specimen
    number
    Ultimate
    load/kN
    Average
    ultimate load/kN
    Bond
    strength/MPa
    Average bond
    strength/MPa
    0 50 0-150×50-1 12.26 12.05 245.2 240.9
    0-150×50-2 11.32 226.4
    0-150×50-3 12.56 251.2
    70 0-150×70-1 15.39 16.37 219.9 228.1
    0-150×70-2 17.14 248.6
    0-150×70-3 15.11 215.9
    30 50 30-150×50-1 11.78 10.63 235.6 212.6
    30-150×50-2 9.14 182.8
    30-150×50-3 10.97 219.4
    70 30-150×70-1 15.16 14.12 216.6 201.7
    30-150×70-2 14.05 200.7
    30-150×70-3 13.15 187.9
    60 50 60-150×50-1 9.19 10.31 183.8 206.2
    60-150×50-2 12.02 240.4
    60-150×50-3 9.72 194.4
    70 60-150×70-1 11.03 12.96 157.6 185.1
    60-150×70-2 13.21 188.7
    60-150×70-3 14.64 209.1
    90 50 90-150×50-1 10.24 10.14 204.8 202.7
    90-150×50-2 9.51 190.2
    90-150×50-3 10.66 213.2
    70 90-150×70-1 12.19 12.11 174.1 173.0
    90-150×70-2 10.62 151.7
    90-150×70-3 13.52 193.1
    120 50 120-150×50-1 8.85 9.67 177.0 193.5
    120-150×50-2 9.51 190.2
    120-150×50-3 10.66 213.2
    70 120-150×70-1 11.68 11.54 166.9 164.9
    120-150×70-2 12.20 174.3
    120-150×70-3 10.74 153.4
    150 50 150-150×50-1 8.76 9.32 175.2 186.4
    150-150×50-2 9.65 193.0
    150-150×50-3 9.55 191.0
    70 150-150×70-1 11.42 10.87 163.1 155.3
    150-150×70-2 10.97 156.7
    150-150×70-3 10.22 146.0
    180 50 180-150×50-1 8.91 8.85 178.2 177.0
    180-150×50-2 9.17 183.4
    180-150×50-3 8.47 169.4
    70 180-150×70-1 10.77 10.23 153.8 146.1
    180-150×70-2 9.59 137.0
    180-150×70-3 10.33 147.6
    Notes: Specimen number is soaking cycle - bond length × bond width - number of specimens; The change is compared with the results under 0 soaking cycles (room temperature conditions).
    下载: 导出CSV

    表  3  两种粘结宽度CFRP-粘土砖试件承载能力与粘结强度的变化幅度

    Table  3.   Changes of bearing capacity and bond strength of CFRP-clay brick specimens with two bond widths

    Soaking
    cycle/d
    Average ultimate bearing capacity/kNChange/%Average bond strength/MPaChange/%
    70 mm wide specimen50 mm wide specimen70 mm wide specimen50 mm wide specimen
    0 16.37 12.05 −26.4 228.1 240.9 +5.3
    30 14.12 10.63 −24.7 201.7 212.6 +5.1
    60 12.96 10.31 −18.1 185.1 206.2 +12.8
    90 12.11 10.14 −16.3 173.0 202.7 +14.7
    120 11.54 9.67 −16.2 164.9 193.5 +14.8
    150 10.87 9.32 −14.2 155.3 186.4 +16.7
    180 10.23 8.85 −13.5 146.1 177.0 +17.5
    下载: 导出CSV

    表  4  室温条件下不同粘结宽度CFRP-粘土砖试件的剥离承载力

    Table  4.   Peel bearing capacity of CFRP-clay brick specimens with different bond widths under standard maintenance conditions

    Compressive strength of
    clay bricks/MPa
    CFRP length/mmCFRP width/mmTest value/kNCalculated value/kNRatio
    17.3915030 7.62 7.720.987
    1505012.0512.210.987
    1507016.3716.580.987
    1509020.6920.940.988
    下载: 导出CSV

    表  5  硫酸盐各浸泡周期下CFRP-粘土砖极限承载力计算结果与试验结果对比

    Table  5.   Comparison between calculated and experimental results of ultimate bearing capacity of CFRP-clay brick under each soaking cycle of sulfate

    Soaking
    cycle/d
    70 mm width specimen50 mm width specimen
    Test results/kNMethod 1
    calculation
    results/kN
    Method 2
    calculation
    results/kN
    Test results/kNMethod 1
    calculation
    results/kN
    Method 2 calculation results/kN
    0 16.37 16.13 16.30 12.05 12.15 12.16
    30 14.12 14.30 14.81 10.63 11.32 11.05
    60 12.96 12.89 13.63 10.31 10.63 10.17
    90 12.11 11.82 12.70 10.14 10.07 9.48
    120 11.54 11.02 11.99 9.67 9.61 8.94
    150 10.87 10.45 11.45 9.32 9.25 8.54
    180 10.23 10.08 11.08 8.85 8.98 8.27
    下载: 导出CSV
  • [1] 李莉. 传统砌体房屋病害分析及结构加固[D]. 邯郸: 河北工程大学, 2018.

    LI Li. Disease analysis and structural seismic strengthening of traditional masonry buildings[D]. Handan: Hebei University of Engineering, 2018(in Chinese).
    [2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-34. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-34(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.004
    [3] 王作虎, 申书洋, 杨菊, 等. FRP布加固结构粘结界面耐久性的研究进展[J]. 复合材料科学与工程, 2020(7):117-122.

    WANG Zuohu, SHEN Shuyang, YANG Ju, et al. Research progress on durability of bond interface of FRP sheet reinforced structures[J]. Composites Science and Engineering,2020(7):117-122(in Chinese).
    [4] JI Y C, KIM Y J. Effects of sulfuric acid on durability characteristics of CFRP composite sheets[J]. Journal of Materials in Civil Engineering,2017,29(10):04017159. doi: 10.1061/(ASCE)MT.1943-5533.0002008
    [5] ZINNO A, LIGNOLA G P, PROTA A, et al. Influence of free edge stress concentration on effectiveness of FRP confinement[J]. Composites Part B: Engineering,2010,41(7):523-532. doi: 10.1016/j.compositesb.2010.07.003
    [6] 张祥顺, 谷倩, 管克俭, 等. 碳纤维布加固砌体结构试验研究[J]. 武汉理工大学学报, 2002, 24(11):29-32.

    ZHANG Shunxiang, GU Qian, GUAN Kejian, et al. Experimental study of masonry walls strengthened by CFRP[J]. Journal of Wuhan University of Technology,2002,24(11):29-32(in Chinese).
    [7] ALECCI V, BATI S B, RANOCCHIAI G. Study of brick masonry columns confined with CFRP composite[J]. Journal of Composites for Construction,2009,13(3):179-187. doi: 10.1061/(ASCE)1090-0268(2009)13:3(179)
    [8] YARIGARRAVESH M, TOUFIGH V, MOFID M. Experimental and analytical evaluation of FRPs bonded to masonry-long term[J]. Surface and Coatings Technology,2018,344:729-741.
    [9] 陶毅, 古金本, 信任, 等. CFRP网格修复后多层砌体结构墙体的抗震性能[J]. 西南交通大学学报, 2019, 54(6):1258-1267. doi: 10.3969/j.issn.0258-2724.20170491

    TAO Yi, GU Jinben, XIN Ren, et al. Seismic performance of multi-storey masonry wall repaired by carbon fiber reinforced polymer grids[J]. Journal of Southwest Jiaotong University,2019,54(6):1258-1267(in Chinese). doi: 10.3969/j.issn.0258-2724.20170491
    [10] 雷真, 白柳, 郭洪波, 等. FRP加固砌体结构的界面粘结性能综述[J]. 材料科学, 2018, 8(11):1038-1046. doi: 10.12677/MS.2018.811124

    LEI Zhen, BAI Liu, GUO Hongbo, et al. A review of interfacial adhesion properties between FRP and masonry structures reinforced with FRP[J]. Material Sciences,2018,8(11):1038-1046(in Chinese). doi: 10.12677/MS.2018.811124
    [11] KASHYAP J, WILLIS C R, GRIFFITH M C, et al. Debonding resistance of FRP-to-clay brick masonry joints[J]. Engi-neering Structures,2012,41(8):186-198.
    [12] 宦文娟. 多因素耦合作用下砖及其砌体的性能劣化规律与机理研究[D]. 南京: 东南大学, 2013.

    HUAN Wenjuan. Investigation of deterioration and mechanism of brick and masonry subjected to multi-factor coupling effect[D]. Nanjing: Southeast University, 2013(in Chinese).
    [13] 王作虎, 王江北, 申书洋, 等. 冻融循环对FRP片材-砌块界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11):5275-5286. doi: 10.13801/j.cnki.fhclxb.20220110.003

    WANG Zuohu, WANG Jiangbei, SHEN Shuyang, et al. Effect of freeze-thaw cycles on bond properties of FRP sheet-brick[J]. Acta Materiae Compositae Sinica,2022,39(11):5275-5286(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220110.003
    [14] 靳文强, 赵建昌, 王琦, 等. 冻融循环对CFRP-烧结粘土砖界面粘结性能影响[J]. 复合材料学报, 2020, 37(9):2294-2302. doi: 10.13801/j.cnki.fhclxb.20200111.002

    JIN Wenqiang, ZHAO Jianchang, WANG Qi, et al. Effects of freeze-thaw cycles on interfacial bonding property of CFRP-sintered clay brick[J]. Acta Materiae Compositae Sinica,2020,37(9):2294-2302(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200111.002
    [15] 王复生, 孙瑞莲, 秦晓鹃. 察尔汗盐湖条件下水泥混凝土耐久性调查研究[J]. 硅酸盐通报, 2002, 21(4):16-21,35. doi: 10.3969/j.issn.1001-1625.2002.04.004

    WANG Fusheng, SUN Ruilian, QIN Xiaojuan. The investigation of concrete durability under natural condition of Ca Er Han salt lake[J]. Bulletin of the Chinese Ceramic Society,2002,21(4):16-21,35(in Chinese). doi: 10.3969/j.issn.1001-1625.2002.04.004
    [16] 刘生纬. 硫酸盐环境下CFRP-混凝土界面粘结性能退化规律及劣化机理研究[D]. 兰州: 兰州交通大学, 2018.

    LIU Shengwei. Research on degradation law and mechanism of CFRP sheet-concrete interfacial bonding performance under sulfate environment[D]. Lanzhou: Lanzhou jiaotong University, 2018(in Chinese).
    [17] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京: 东南大学, 2004.

    YU Hongfa. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004(in Chinese).
    [18] 张家玮, 邵利君, 刘生纬, 等. 硫酸盐环境中CFRP约束劣化混凝土柱的力学性能[J]. 复合材料学报, 2021, 38(3):966-978. doi: 10.13801/j.cnki.fhclxb.20201210.002

    ZHANG Jiawei, SHAO Lijun, LIU Shengwei, et al. Mechani-cal properties of CFRP confined pre-damaged concrete columns in sulfate environment[J]. Acta Materiae Compositae Sinica,2021,38(3):966-978(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201210.002
    [19] 中国国家标准化管理委员会. 纤维增强塑料性能试验方法总则: GB/T 1446—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastics composites-The generals for determination of properties: GB/T 1446—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20] 中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials: GB/T 3354—2014[S]. Beijing: China Standards Press, 2005(in Chinese).
    [21] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [22] 中国国家标准化管理委员会. 烧结普通砖: GB/T 5101—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Fired common bricks: GB/T 5101—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [23] 黄奕辉. FRP与砖界面行为及其应用研究[D]. 泉州: 华侨大学, 2008.

    HUANG Yihui. Studies on FRP-brick interface and it application[D]. Quanzhou: Hua Qiao University, 2008(in Chinese).
    [24] 王全凤, 陈莹, 黄奕辉, 等. GFRP复合材料与粘土砖单剪粘结试验研究[J]. 建筑结构, 2008, 38(5):106-108.

    WANG Quanfeng, CHEN Ying, HUANG Yihui, et al. Experimental study on single shear strength between GFRP and clay brick[J]. Building Structure,2008,38(5):106-108(in Chinese).
    [25] 钱长根. 纤维增强复合材料(FRP)与烧结普通砖粘结性能的试验研究[D]. 泉州: 华侨大学, 2007.

    QIAN Changgen. Experimental research on bonded pro-perty of interface between FRP and fired common brick[D]. Quanzhou: Hua Qiao University, 2007(in Chinese).
    [26] 郑怡, 李莉, 刘明, 等. FRP与砌体界面的粘结承载力[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(1):27-30.

    ZHENG Yi, LI Li, LIU Ming, et al. Study on anchorage strength models for FRP attached to masonry[J]. Journal of Shenyang Jianzhu University (Natural Science),2010,26(1):27-30(in Chinese).
    [27] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engineering Structures,2004,26(5):553-565. doi: 10.1016/j.engstruct.2003.11.006
    [28] NAKABA K, KANAKUBO T, FURUTA T, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal,2001,98(3):359-367.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  264
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2022-12-02
  • 录用日期:  2022-12-21
  • 网络出版日期:  2023-01-06
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回