留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素基热电复合材料研究进展

陈鲁正 马鸿梁 娄江 姜亦飞 韩文佳

陈鲁正, 马鸿梁, 娄江, 等. 纤维素基热电复合材料研究进展[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 陈鲁正, 马鸿梁, 娄江, 等. 纤维素基热电复合材料研究进展[J]. 复合材料学报, 2022, 40(0): 1-12
Luzheng CHEN, Hongliang MA, Jiang LOU, Yifei JIANG, Wenjia HAN. Research Progress of Cellulose-based Thermoelectric Composites[J]. Acta Materiae Compositae Sinica.
Citation: Luzheng CHEN, Hongliang MA, Jiang LOU, Yifei JIANG, Wenjia HAN. Research Progress of Cellulose-based Thermoelectric Composites[J]. Acta Materiae Compositae Sinica.

纤维素基热电复合材料研究进展

基金项目: 国家重点研发计划 (2020 YFC1910301);山东省自然科学基金 (ZR2021 QC158,ZR2021 QB009);齐鲁工业大学(山东省科学院)生物基材料与绿色造纸国家重点实验室开放基金 (ZZ20190111;ZZ20210104)
详细信息
    通讯作者:

    韩文佳,博士,教授,硕士生导师,研究方向为纸基功能材料方向 E-mail: hwj200506@163.com

  • 中图分类号: TB3333

Research Progress of Cellulose-based Thermoelectric Composites

  • 摘要: 随着全球经济的蓬勃发展,人类对于能源的需求越来越大,因此对于绿色环保型热电材料的研究和应用已经刻不容缓。纤维素作为自然界中含量最丰富的天然高分子,具有丰富的三维网络结构以及优异的热稳定性,是作为柔性热电复合材料的理想基底之一,对其大规模开发利用符合绿色可持续发展的理念。纤维素基热电复合材料可以将人体、化石能源等产生的废热充分转化为电能,具有性能稳定、绿色环保、使用寿命长、低成本、易加工等优点。本文综述了近年来纤维素基复合材料的发展现状及应用领域,着重从聚合物复合材料、碳基复合材料和Bi-Te合金复合材料三个方面进行阐述。并对纤维素基复合材料面对的挑战以及未来的研究趋势进行了总结和展望。

     

  • 图  1  热电器件基本工作原理示意图[10]:(a)Seebeck效应;(b)Peltier效应

    Figure  1.  Schematic diagram of basic working principles of thermoelectric devices[10]: (a) Seebeck effect;(b) Peltier effect

    图  2  (a)纤维素纱线工艺流程图[21],(b)纤维素纱线图[21],(c)不同温度梯度下热电性能图[21],(d)折叠后和原始相对应的电导率和塞贝克系数[22],(e)电导率随折叠次数的变化[22],(f)纤维素海绵浸入式组件示意图[23]

    Figure  2.  (a) Process flow chart of cellulose yarn[21], (b) Photograph of Cellulose yarn[21], (c) Hemoelectric performance diagram at different temperature gradients[21], (d) Corresponding conductivity and Seebeck coefficient after folding and the original[22], (e) Electrical conductivity changes with the number of folds[22], (f) Schematic diagram of the cellulose sponge immersion assembly[23]

    图  3  (a) MC/PP复合膜制备示意图[24],(b) DMSO处理前后复合膜的功率因子[24],(c) NFC-PEDOT:PSS气凝胶工艺图[25],(d) NFC-PEDOT:PSS和硅化物微粒之间接触示意图[25],(e)离子热电纸照片以及NFC和PSSNa的化学结构[27],(f) NFC-PSSNa样品拉伸强度与应变的关系[27],(g)复合薄与纯PSSNa膜的热电性能与湿度的关系[27]

    Figure  3.  (a) Schematic diagram of the preparation of the MC / PP composite membrane[24], (b) Power factor of the composite membrane before and after DMSO treatment[24], (c) NFC-PEDOT: PSS aerogel process diagram[25], (d) NFC-PEDOT: Schematic diagram of contacts between PSS and silicate particles[25], (e) Ion thermoelectric paper photographs and the chemical structures of the NFC and PSSNa[27], (f) Relations between tensile strength and strain of the NFC-PSSNa samples[27], (g) The relationship between the thermoelectric properties and humidity of composite thin and pure PSSNa membrane[27]

    图  4  (a)纸基TEG制备工艺图[30],(b) TEG在10 K温差下拟合的功率曲线[30],(c) MWCNT/C-CNF纸基TEG制造工艺图[29],(d)气溶胶喷射打印示意图[31],(e)不同层数CNT/HPC复合膜的功率因子[31]

    Figure  4.  (a) Process diagram of paper-based TEG preparation[30], (b) Power curves fitted by TEG at 10 K temperature difference[30], (c) MWCNT/C-CNF paper-based TEG manufacturing process diagram[29], (d) Schematic diagram of the aerosol jet printing[31], (e) Power factor of the CNT/HPC composite membranes of different layers[31]

    图  5  (a) CNT/CNF气凝胶的制备示意图[33],(b) TE气凝胶在30 K温差下的功率曲线[33],(c)柔性多孔PEDOT/SWCNT/BC薄膜制备示意图[34],(d)输出电压和输出功率作为输出电流在不同温度下沿温度梯度的函数[34]

    Figure  5.  (a) Schematic diagram of the preparation of the CNT/CNF aerogels[33], (b) Power curves of TE aerogels at 30 K temperature difference[33], (c) Schematic diagram of the preparation of flexible porous PEDOT/SWCNT/BC thin films[34], (d) The output voltage and the output power act as a function of the output current along a temperature gradient at different temperatures[34]

    图  6  (a)高性能丝网印刷热电薄膜工艺图[36],(b)粘结剂与TE颗粒重量比对功率因子的影响[37],(c)柔性纸基TEG工艺图[38]

    Figure  6.  (a) High-performance silk screen printing thermoelectric thin film process diagram[36], (b) Effect of binder to TE particles on power factor[37], (c) Process diagram of flexible paper-based TEG[38]

    图  7  (a)传感器的变化电流对于按压、手指弯曲和手臂弯曲[41],(b)传感器在反复弯曲和释放2000次循环下的电流变化[41],(c)聚合物MIEC气凝胶在不同压力温度和湿度下I-V曲线的变化[44]

    Figure  7.  (a) The changing current of the sensor is applied for pressing, finger bending, and arm bending[41], (b) Current changes of the sensor during repeated bending and release of 2,000 cycles[41], (c) Changes of I-V curves for polymer MIEC aerogels at different pressure temperatures and humidity[44]

    图  8  (a)皮肤温度和纺织品温度随周围环境的变化[46],(b)用于LED灯泡的TEG设备及电路图[46],(c) TEG设备潜在应用[46],(d)热电纸的制备流程图及应用[47],(e)热电发电机利用烧杯的热能和侧视图以及在水温为40℃和60℃时的输出电压图[48]

    Figure  8.  (a) Skin temperature and textile temperature change with the surrounding environment[46], (b) TEG equipment and circuit diagrams for LED light bulbs[46], (c) Potential applications of the TEG equipment[46], (d) Flow chart and application of thermoelectric paper preparation[47], (e) The thermoelectric generator uses the heat and side view of the beaker and the output voltage diagram at a water temperature of 40℃ and 60℃[48]

    表  1  不同纤维素基复合材料制备方法分析

    Table  1.   Analysis of the preparation methods of different cellulose matrix composites

    MethodMaterialT/KS/(µV·K−1)σ/(S·cm−1)PF/(μW m−1 K−2)Ref.
    Dip coatingPEDOT30020.522.130.97[22]
    Screen printingPEDOT34022.1331.516.2[24]
    Freeze dryingPEDOT300885.40.31[25]
    Template printingMWCNT30012.71282.06[29]
    Jet printingSWCNT300431100208[31]
    In situ polymerizationPEDOT,SWCNT30019290.612[34]
    Drop castingBi0.46 Sb1.34 Te3.2300226141611[37]
    下载: 导出CSV
  • [1] LI T, QIN H, WANG J, et al. Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water[J]. Renewable Energy,2021,175:318-336. doi: 10.1016/j.renene.2021.04.062
    [2] KUMAR K R, CHAITANYA N K, KUMAR N S. Solar thermal energy technologies and its applications for process heating and power generation–A review[J]. Journal of Cleaner Production,2021,282:125296. doi: 10.1016/j.jclepro.2020.125296
    [3] SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Applied energy,2017,202:736-745. doi: 10.1016/j.apenergy.2017.05.181
    [4] ZHAO D, SULTANA A, EDBERG J, et al. The role of absorbed water in ionic liquid cellulosic electrolytes for ionic thermoelectrics [J]. Journal of Materials Chemistry C, 2022.
    [5] SHI X, CHEN L, UHER C. Recent advances in high-performance bulk thermoelectric materials[J]. International Materials Reviews,2016,61(6):379-415. doi: 10.1080/09506608.2016.1183075
    [6] KRAEMER D, JIE Q, MCENANEY K, et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%[J]. Nature Energy,2016,1(11):1-8.
    [7] SUAREZ F, NOZARIASBMARZ A, VASHAEE D, et al. Designing thermoelectric generators for self-powered wearable electronics[J]. Energy Environmental Science,2016,9(6):2099-2113. doi: 10.1039/C6EE00456C
    [8] YU B, DUAN J, CONG H, et al. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting[J]. Science,2020,370(6514):342-346. doi: 10.1126/science.abd6749
    [9] 高杰, 苗蕾, 张斌, 等. 柔性复合热电材料及器件的研究进展[J]. 功能高分子学报, 2017, 30(2):142-167.

    GAO Jie, MIAO Lei, ZHANG Bin, et al. Advances in Flexible Thermoelectric Materials and Devices[J]. Journal of Functional Polymers,2017,30(2):142-167(in Chinese).
    [10] 王晓东. PEDOT: PSS/无机复合薄膜及溶剂处理对其热电性能的优化[D]. 吉林大学, 2018.

    WANG XiaoDong. Optimizing the thermoelectric performance of PEDOT: PSS/inorganic films based on composite and solvent-treatment [D]. Jilin University, 2018(in Chinese).
    [11] ABOL-FOTOUH D, DöRLING B, ZAPATA-ARTEAGA O, et al. Farming thermoelectric paper[J]. Energy environmental science,2019,12(2):716-726. doi: 10.1039/C8EE03112F
    [12] GAO K, SHAO Z, WU X, et al. based transparent flexible thin film supercapacitors[J]. Nanoscale,2013,5(12):5307-5311. doi: 10.1039/c3nr00674c
    [13] KHAN S, UL-ISLAM M, KHATTAK W A, et al. Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications[J]. Carbohydrate polymers,2015,127:86-93. doi: 10.1016/j.carbpol.2015.03.055
    [14] KHAN S, UL-ISLAM M, KHATTAK W A, et al. Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility[J]. Cellulose,2015,22(1):565-579. doi: 10.1007/s10570-014-0528-4
    [15] HE X, HAO Y, HE M, et al. Stretchable Thermoelectric-Based Self-Powered Dual-Parameter Sensors with Decoupled Temperature and Strain Sensing[J]. ACS Applied Materials Interfaces,2021,13(50):60498-60507. doi: 10.1021/acsami.1c20456
    [16] XU S, FAN Z, YANG S, et al. Highly Flexible, Stretchable, and Self-Powered Strain-Temperature Dual Sensor Based on Free-Standing PEDOT: PSS/Carbon Nanocoils–Poly (vinyl) Alcohol Films[J]. ACS sensors,2021,6(3):1120-1128. doi: 10.1021/acssensors.0c02390
    [17] ZHU Y, XU W, RAVICHANDRAN D, et al. A gill-mimicking thermoelectric generator (TEG) for waste heat recovery and self-powering wearable devices[J]. Journal of Materials Chemistry A,2021,9(13):8514-8526. doi: 10.1039/D1TA00332A
    [18] WANG Y, MAO H, WANG Y, et al. 3 D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications[J]. Journal of Materials Chemistry A,2020,8(30):15167-15176. doi: 10.1039/D0TA05651K
    [19] LI Y, LOU Q, YANG J, et al. Exceptionally High Power Factor Ag2 Se/Se/Polypyrrole Composite Films for Flexible Thermoelectric Generators[J]. Advanced Functional Materials,2021:2106902.
    [20] SUH E H, OH J G, JUNG J, et al. Brønsted Acid Doping of P3 HT with Largely Soluble Tris (pentafluorophenyl) borane for Highly Conductive and Stable Organic Thermoelectrics Via One-Step Solution Mixing[J]. Advanced Energy Materials,2020,10(47):2002521. doi: 10.1002/aenm.202002521
    [21] DARABI S, HUMMEL M, RANTASALO S, et al. Green conducting cellulose yarns for machine-sewn electronic textiles[J]. ACS applied materials interfaces,2020,12(50):56403-56412. doi: 10.1021/acsami.0c15399
    [22] DENG L, ZHANG Y, WEI S, et al. Highly foldable and flexible films of PEDOT: PSS/Xuan paper composites for thermoelectric applications[J]. Journal of Materials Chemistry A,2021,9(13):8317-8324. doi: 10.1039/D1TA00820J
    [23] CHENG H, DU Y, WANG B, et al. Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting[J]. Chemical Engineering Journal,2018,338:1-7. doi: 10.1016/j.cej.2017.12.134
    [24] NIU H, LIU Y, SONG H, et al. Facile preparation of flexible all organic PEDOT: PSS/methyl cellulose thermoelectric composite film by a screen printing process[J]. Synthetic Metals,2021,276:116752. doi: 10.1016/j.synthmet.2021.116752
    [25] AIL U, KHAN Z U, GRANBERG H, et al. Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications[J]. Synthetic Metals,2017,225:55-63. doi: 10.1016/j.synthmet.2017.01.007
    [26] NAYAK R, SHETTY P, M S, et al. Formulation of new screen printable PANI and PANI/Graphite based inks: Printing and characterization of flexible thermoelectric generators[J]. Energy,2022,238:121680. doi: 10.1016/j.energy.2021.121680
    [27] JIAO F, NADERI A, ZHAO D, et al. Ionic thermoelectric paper[J]. Journal of Materials Chemistry A,2017,5(32):16883-16888. doi: 10.1039/C7TA03196C
    [28] SHENG M, WANG Y, LIU C, et al. Significantly enhanced thermoelectric performance in SWCNT films via carrier tuning for high power generation[J]. Carbon,2020,158:802-807. doi: 10.1016/j.carbon.2019.11.057
    [29] LI H, ZONG Y, DING Q, et al. Paper-based thermoelectric generator based on multi-walled carbon nanotube/carboxylated nanocellulose[J]. Journal of Power Sources,2021,500:229992. doi: 10.1016/j.jpowsour.2021.229992
    [30] MO J-H, KIM J-Y, KANG Y H, et al. Carbon Nanotube/Cellulose Acetate Thermoelectric Papers[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):15970-15975.
    [31] LEE H R, FURUKAWA N, RICCO A J, et al. Carbon nanotube thermoelectric devices by direct printing: Toward wearable energy converters[J]. Applied Physics Letters,2021,118(17):173901. doi: 10.1063/5.0042349
    [32] GNANASEELAN M, CHEN Y, LUO J, et al. Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials[J]. Composites Science and Technology,2018,163:133-140. doi: 10.1016/j.compscitech.2018.04.026
    [33] LI H, ZONG Y, HE J, et al. Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection[J]. Carbohydrate Polymers,2022,280:119036. doi: 10.1016/j.carbpol.2021.119036
    [34] JIA F, WU R, LIU C, et al. High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12591-12600.
    [35] BAO D, CHEN J, YU Y, et al. Texture-dependent thermoelectric properties of nano-structured Bi2 Te3[J]. Chemical Engineering Journal,2020,388:124295. doi: 10.1016/j.cej.2020.124295
    [36] SHIN S, KUMAR R, ROH J W, et al. High-Performance Screen-Printed Thermoelectric Films on Fabrics[J]. Scientific Reports,2017,7(1):1-9. doi: 10.1038/s41598-016-0028-x
    [37] JANG E, POOSAPATI A, JANG N, et al. Thermoelectric properties enhancement of p-type composite films using wood-based binder and mechanical pressing[J]. Sci Rep,2019,9(1):1-10.
    [38] DONG Z, LIU H, YANG X, et al. Facile fabrication of paper-based flexible thermoelectric generator[J]. npj Flexible Electronics,2021,5(1):1-6. doi: 10.1038/s41528-020-00098-1
    [39] JIN Q, SHI W, ZHAO Y, et al. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics[J]. ACS applied materials interfaces,2018,10(2):1743-1751. doi: 10.1021/acsami.7b16356
    [40] ZHAO X, HAN W, JIANG Y, et al. A honeycomb-like paper-based thermoelectric generator based on a Bi2 Te3/bacterial cellulose nanofiber coating[J]. Nanoscale,2019,11(38):17725-17735. doi: 10.1039/C9NR06197E
    [41] LI J, WANG B, GE Z, et al. Flexible and hierarchical 3 D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability[J]. ACS applied materials interfaces,2019,11(42):39088-39099. doi: 10.1021/acsami.9b13675
    [42] KHAN Z U, EDBERG J, HAMEDI M M, et al. Thermoelectric Polymers and their Elastic Aerogels[J]. Adv Mater,2016,28(22):4556-4562. doi: 10.1002/adma.201505364
    [43] HAN S, JIAO F, KHAN Z U, et al. Thermoelectric Polymer Aerogels for Pressure-Temperature Sensing Applications[J]. Advanced Functional Materials,2017,27(44):1703549. doi: 10.1002/adfm.201703549
    [44] HAN S, ALVI N U H, GRANLOF L, et al. A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels[J]. Adv Sci (Weinh),2019,6(8):1802128. doi: 10.1002/advs.201802128
    [45] ZHOU S, QIU Z, STRøMME M, et al. Highly Crystalline PEDOT Nanofiber Templated by Highly Crystalline Nanocellulose[J]. Advanced Functional Materials,2020,30(49):2005757. doi: 10.1002/adfm.202005757
    [46] WU K, ZHANG Y, GONG F, et al. Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables[J]. Chemical Engineering Journal,2021,421:127764. doi: 10.1016/j.cej.2020.127764
    [47] HU J, LI R, ZHANG K, et al. Extract nano cellulose from flax as thermoelectric enhancement material[J]. Journal of Physics:Conference Series,2021,1790(1):012087. doi: 10.1088/1742-6596/1790/1/012087
    [48] MULLA R, JONES D R, DUNNILL C W. Thin-films on cellulose paper to construct thermoelectric generator of promising power outputs suitable for low-grade heat recovery[J]. Materials Today Communications,2021,29:102738. doi: 10.1016/j.mtcomm.2021.102738
    [49] Lan X, Wang T, Liu C, et al. A high performance all-organic thermoelectric fiber generator towards promising wearable electron[J]. Composites Science and Technology,2019,182:107767. doi: 10.1016/j.compscitech.2019.107767
    [50] Zhang Y, Hu Y, Li Z, et al. Decoupling the trade-off between thermoelectric and mechanical performances for polymer composites via interfacial regulation[J]. Composites Science and Technology,2022,222:109373. doi: 10.1016/j.compscitech.2022.109373
    [51] Lv H, Liang L, Zhang Y, et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting[J]. Nano Energy,2021,88:106260. doi: 10.1016/j.nanoen.2021.106260
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-05-21
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-06-13

目录

    /

    返回文章
    返回