留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐高温有机/无机杂化聚酰亚胺基体树脂

刘仪 莫松 许晓洲 杜新玉 何民辉 翟磊 范琳

刘仪, 莫松, 许晓洲, 等. 耐高温有机/无机杂化聚酰亚胺基体树脂[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 刘仪, 莫松, 许晓洲, 等. 耐高温有机/无机杂化聚酰亚胺基体树脂[J]. 复合材料学报, 2022, 40(0): 1-10
Yi LIU, Song MO, Xiaozhou XU, Xinyu DU, Minhui HE, Lei ZHAI, Lin FAN. Organic/inorganic hybrid polyimide matrix resins with high temperature resistance[J]. Acta Materiae Compositae Sinica.
Citation: Yi LIU, Song MO, Xiaozhou XU, Xinyu DU, Minhui HE, Lei ZHAI, Lin FAN. Organic/inorganic hybrid polyimide matrix resins with high temperature resistance[J]. Acta Materiae Compositae Sinica.

耐高温有机/无机杂化聚酰亚胺基体树脂

详细信息
    通讯作者:

    刘仪,博士,助理研究员,研究方向为高性能聚酰亚胺树脂及其复合材料 E-mail: liuyipi@iccas.ac.cn

    范琳,博士,研究员,博士生导师,研究方向为高性能和功能性聚酰亚胺材料 E-mail: fanlin@iccas.ac.cn

  • 中图分类号: TB324

Organic/inorganic hybrid polyimide matrix resins with high temperature resistance

  • 摘要: 热固性聚酰亚胺树脂基复合材料已在航空航天领域得到了广泛的应用,然而随着航空航天技术的发展,传统有机聚酰亚胺基体树脂的耐温等级逐渐不足以达到飞行器的设计和应用需求,发展新型耐高温有机/无机杂化聚酰亚胺树脂成为国内外研究重点。本文总结了近年来国内外有机/无机杂化聚酰亚胺基体树脂的发展现状,重点从合成方法、结构设计与性能调控、固化过程和高温降解行为等方面对含笼状倍半硅氧烷聚酰亚胺、含碳硼烷聚酰亚胺和含硅氧烷聚酰亚胺的特点和耐热机制进行了介绍,并对有机/无机杂化聚酰亚胺树脂未来发展面临的挑战与机遇进行了讨论分析。

     

  • 图  1  反应性改性剂PEPI-POSS的结构类型[17]

    Figure  1.  Structure types of the reactive modifiers PEPI-POSS[17]

    图  2  bis-PE POSS化合物的化学结构[19]

    Figure  2.  Chemical structure of the bis-PE POSS compound[19]

    图  3  含POSS结构二胺单体[21, 22]

    Figure  3.  POSS-containing diamine monomers[21, 22]

    图  4  含碳硼烷反应性改性剂与有机聚酰亚胺树脂共混体系[26-28]

    Figure  4.  The blend systems of carborane-containing reactive modifiers and organic polyimides[26-28]

    图  5  含碳硼烷聚酰亚胺热降解过程示意图[29]

    Figure  5.  Schematic diagram of thermal degradation pathway of carborane-containing polyimides[29]

    图  6  含碳硼烷芳香二胺化学结构[30, 31]

    Figure  6.  Chemical structures of carborane-containing diamines[30, 31]

    图  7  含硅氧烷酰亚胺预聚物化学结构[38]

    Figure  7.  Chemical structures of siloxane-containing oligoimides[38]

    图  8  含硅氧烷聚酰亚胺树脂基复合材料多步降解行为[48]

    Figure  8.  The multistep degradation behavior of siloxane-containing polyimide matrix composite[48]

    表  1  经288℃/1024 h热氧老化后T650-35碳纤维增强含POSS聚酰亚胺复合材料失重和288℃的弯曲性能数据[20]

    Table  1.   The weight loss and flexural property at 288℃ of the T650-35 carbon fiber reinforced POSS-containing polyimide composites after aging at 288℃ for 1024 h[20]

    MatrixMass loss/%Flexural strength/MPaFlexural modulus/GPa
    HFPE-II-520.90654±4154±1
    HFPE-II-52+7.5% POSS-PETI0.84694±2157±1
    HFPE-II-52+15% POSS-PETI0.60746±3459±1
    下载: 导出CSV

    表  2  T700碳纤维增强含碳硼烷聚酰亚胺复合材料力学性能数据[27]

    Table  2.   Mechanical property of T700 carbon fiber reinforced carborane-containing polyimide composites[27]

    MatirxFlexural strength/MPaFlexural modulus/GPaInterlaminar shear strength/MPa
    PI-mPDA 1270 93 56
    PI-mPDA +5% CB-PEPA 1592 117 62
    PI-mPDA +10% CB-PEPA 1612 116 63
    PI-mPDA +15% CB-PEPA 1524 107 66
    PI-mPDA +20% CB-PEPA 1406 115 54
    PI-mPDA +25% CB-PEPA 1591 113 52
    下载: 导出CSV

    表  3  500℃/1 h热氧老化前后含碳硼烷聚酰亚胺树脂力学性能数据[30]

    Table  3.   Mechanical property of carborane-containing polyimide resins before and after thermo-oxidative aging at 500℃ for 1 h[30]

    MatrixTensile strength/MPaTensile modulus/GPaElongation at break/%
    CBA-BPDA-1 11.53±1.08 1.32±0.15 0.88±0.12
    Aged CBA-BPDA-1 8.42±2.28 1.55±0.14 0.55±0.16
    CBA-BTDA-1 10.84±2.12 1.88±0.15 0.57±0.08
    Aged CBA-BTDA-1 6.05±1.20 2.12±0.12 0.30±0.06
    下载: 导出CSV

    表  4  含硅氧烷聚酰亚胺复合材料室温及500℃高温力学性能[47]

    Table  4.   Mechanical property of siloxane-containing polyimide composites at room temperature and 500℃[47]

    Temperature/℃Flexural strength/MPaFlexural modulus/GPaInterlaminar shear strength/MPa
    251741±293119±758±5
    500850±55128±1127±1
    下载: 导出CSV
  • [1] LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Progress in Polymer Science,2012,37(7):907-974. doi: 10.1016/j.progpolymsci.2012.02.005
    [2] GOUZMAN I, GROSSMAN E, VERKER R, et al. Advances in polyimide-based materials for space applications[J]. Advanced Materials,2019,31(18):1807738. doi: 10.1002/adma.201807738
    [3] 赵伟栋, 王磊, 潘玲英, 等. 聚酰亚胺复合材料研究进展[J]. 宇航材料工艺, 2013, 43(4):14-19. doi: 10.3969/j.issn.1007-2330.2013.04.004

    ZHAO W D, WANG L, PAN L Y, et al. Recent advances in polyimide matrix structural composites[J]. Aerospace Materials and Technology,2013,43(4):14-19(in Chinese). doi: 10.3969/j.issn.1007-2330.2013.04.004
    [4] 赵云峰, 潘玲英. 航天先进结构复合材料及制造技术研究进展[J]. 宇航材料工艺, 2021, 51(4):29-36. doi: 10.12044/j.issn.1007-2330.2021.04.004

    ZHAO Y F, PAN L Y. Research progress of aerospace advanced polymer matrix composites and manufacturing technology[J]. Aerospace Materials and Technology,2021,51(4):29-36(in Chinese). doi: 10.12044/j.issn.1007-2330.2021.04.004
    [5] 包建文, 陈祥宝. 发动机用耐高温聚酰亚胺树脂基复合材料的研究进展[J]. 航空材料学报, 2012, 32(6):1-13. doi: 10.3969/j.issn.1005-5053.2012.6.001

    BAO J W, CHEN X B. Advance in high temperature polyimide resin matrix composites for aeroengine[J]. Journal of Aeronautical Materials,2012,32(6):1-13(in Chinese). doi: 10.3969/j.issn.1005-5053.2012.6.001
    [6] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING L Y, BAO J W, LI C M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [7] 阎敬灵, 孟祥胜, 王震, 等. 热固性聚酰亚胺树脂研究进展[J]. 应用化学, 2015, 32(5):9-17.

    YAN J L, MENG X S, WANG Z, et al. Progress in thermosetting polyimide resins[J]. Chinese Journal of Applied Chemistry,2015,32(5):9-17(in Chinese).
    [8] 高禹, 李洋洋, 王柏臣, 等. 先进树脂基复合材料在航空发动机上的应用及研究进展[J]. 航空制造技术, 2016, 21:16-21.

    GAO Y, LI Y Y, WANG B C, et al. Application of advaced resin matrix composites in aeroengine and its research progress[J]. Aeronautical Manufacturing Technology,2016,21:16-21(in Chinese).
    [9] 王倩倩, 周燕萍, 郑会保, 等. 耐高温聚酰亚胺树脂及其复合材料的研究及应用[J]. 工程塑料应用, 2019, 47(8):144-147. doi: 10.3969/j.issn.1001-3539.2019.08.030

    WANG Q Q, ZHOU Y P, ZHENG H B, et al. Research and application of high temperature polyimide and its composite materials[J]. Engineering Plastics Application,2019,47(8):144-147(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.08.030
    [10] 薛书宇, 雷星锋, 连如贺, et al. 高性能热固性聚酰亚胺树脂研究进展[J]. 高分子材料科学与工程, 2021, 37(05):149-162.

    XUE S Y, LEI X F, LIAN R H, et al. Progress of high-performance thermosetting polyimide resins[J]. Polymer Materials Scinece and Engineering,2021,37(05):149-162(in Chinese).
    [11] HADDAD T S, LICHTENHAN J D. Hybrid organic-inorganic thermoplastics: Styryl-based polyhedral oligomeric silsesquioxane polymers[J]. Macromolecules,1996,29(22):7302-7304. doi: 10.1021/ma960609d
    [12] TSUCHIDA A, BOLLN C, SERNETZ F G, et al. Ethene and propene copolymers containing silsesquioxane side groups[J]. Macromolecules,1997,30(10):2818-2824. doi: 10.1021/ma960846g
    [13] WRIGHT M E, SCHORZMAN D A, FEHER F J, et al. Synthesis and thermal curing of aryl-ethynyl-terminated coPOSS imide oligomers: New inorganic/organic hybrid resins[J]. Chemisty of Materials,2003,15(1):264-268. doi: 10.1021/cm020238h
    [14] NEYERTZ S, BROWN D, RAAIJMAKERS M J T, et al. A molecular characterization of hyper-cross-linked hybrid polyPOSS-imide networks[J]. Computational Materials Science,2016,117:338-353. doi: 10.1016/j.commatsci.2016.02.015
    [15] HUANG J C, HE C B, XIAO Y, et al. Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties[J]. Polymer,2003,44(16):4491-4499. doi: 10.1016/S0032-3861(03)00434-8
    [16] LEE A. Durability characterization of POSS-based polyimides and carbon-fiber composites for air force-related applications, ADA482151 [R]. NASA, 2007.
    [17] SEURER B, VIJ V, HADDAD T, et al. Thermal transitions and reaction kinetics of polyhederal silsesquioxane containing phenylethynyl-phthalimides[J]. Macromolecules,2010,43(22):9337-9347. doi: 10.1021/ma101640q
    [18] FINA A, TABUANI D, CARNIATO F, et al. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation[J]. Thermochimica Acta,2006,440(1):36-42. doi: 10.1016/j.tca.2005.10.006
    [19] MOORE L M J, ZAVALA J J, LAMB J T, et al. Bis-phenylethynyl polyhedral oligomeric silsesquioxanes: new high-temperature, processable thermosetting materials[J]. RSC Advances,2018,8(48):27400-27405. doi: 10.1039/C8RA05954C
    [20] 刘仪, 莫松, 潘玲英, 等. 耐高温有机无机杂化聚酰亚胺树脂及其复合材料[J]. 宇航材料工艺, 2018, 48(3):1-5. doi: 10.12044/j.issn.1007-2330.2018.03.001

    LIU Y, MO S, PAN L Y, et al. Organic/inorganic hybrid polyimides and their composites with high temperature resistance[J]. Aerospace Materials and Technology,2018,48(3):1-5(in Chinese). doi: 10.12044/j.issn.1007-2330.2018.03.001
    [21] VIJ V, HADDAD T S, YANDEK G R, et al. Synthesis of aromatic polyhedral oligomeric silsesquioxane (POSS) dianilines for use in high-temperature polyimides[J]. Silicon,2012,4(4):267-280. doi: 10.1007/s12633-012-9130-2
    [22] PINSON D M, YANDEK G R, HADDAD T S, et al. Thermosetting poly(imide silsesquioxane)s featuring reduced moisture affinity and improved processability[J]. Macromolecules,2013,46(18):7363-7377. doi: 10.1021/ma401347q
    [23] BREGADZE V I. Dicarba-closo-dodecaboranes C2B10H12 and their derivatives[J]. Chemical Reviews,1992,92(2):209-223. doi: 10.1021/cr00010a002
    [24] OHTA K, GOTO T, ENDO Y. New synthetic method of 1, 2-diaryl-1, 2-dicarba-closo-dodecaboranes employing aromatic nucleophilic substitution (SNAr) reaction[J]. Tetrahedron Letters,2005,46(3):483-485. doi: 10.1016/j.tetlet.2004.11.074
    [25] WU Y N, FENG C, YANG J P, et al. High thermally stable thermosetting polyimides derived from a carborane-containing tetramine[J]. High Performance Polymers,2019,31(5):548-556. doi: 10.1177/0954008318779429
    [26] YUE J, LI Y T, LI H, et al. Thermal curing of novel carborane-containing phenylethynyl terminated imide oligomers[J]. RSC Advances,2015,5(119):98010-98019. doi: 10.1039/C5RA15743A
    [27] WU Y N, YANG J P, CHEN G. Synthesis and characterization of a carborane-containing monofunctional imide monomer as a modifier for imide oligomer[J]. High Performance Polymers,2018,30(7):812-820. doi: 10.1177/0954008317731504
    [28] CHENG S L, HAN J H, WANG X, et al. Oxidatively stable thermosets derived from thermal copolymerization of acetylene-terminated imide monomer with an acetylenic monomer containing carborane[J]. Polymer,2017,115:96-105. doi: 10.1016/j.polymer.2017.02.070
    [29] YUE J, LI Y T, ZHAO Y, et al. Thermal degradation behavior of carborane-containing phenylethynyl terminated imide systems[J]. Polymer Degradation and Stability,2016,129:286-295. doi: 10.1016/j.polymdegradstab.2016.05.006
    [30] WU Y E, CHEN G, FENG C, et al. High Tg and thermo-oxidatively stable thermosetting polyimides derived from a carborane-containing diamine[J]. Macromolecular Rapid Communications,2018,39(21):1800484. doi: 10.1002/marc.201800484
    [31] WU Y E, CHEN G, ZHAN M S, et al. High heat resistant carbon fiber/polyimide composites with neutron shielding performance[J]. Progress in Organic Coatings,2019,132:184-190. doi: 10.1016/j.porgcoat.2019.03.047
    [32] ZHANG X L, DAI H M, YAN H, et al. B-H…π interaction: A new type of nonclassical hydrogen bonding[J]. Journal of the American Chemical Society,2016,138(13):4334-4337. doi: 10.1021/jacs.6b01249
    [33] KRISHNAMACHARI P, LOU J Z, SANKAR J, et al. Characterization of fourth-generation high-temperature discontinuous fiber molding compounds[J]. International Journal of Polymer Analysis Characterization,2009,14(7):588-599. doi: 10.1080/10236660903225452
    [34] LIU Y, MO S, HE M H, et al. Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane: Effect of siloxane structure on processability and thermal stability[J]. High Performance Polymers,2019,31(6):651-661. doi: 10.1177/0954008318780211
    [35] TIWARI A, NEMA A K, DAS C K, et al. Thermal analysis of polysiloxanes, aromatic polyimide and their blends[J]. Thermochimica Acta,2004,417(1):133-142. doi: 10.1016/j.tca.2003.10.003
    [36] 刘仪, 许晓洲, 莫松, 等. 含硅氧烷结构聚酰亚胺树脂的耐热稳定性及高温结构演变[J]. 高等学校化学学报, 2019, 40(1):187-194. doi: 10.7503/cjcu20180342

    LIU Y, XU X Z, MO S, et al. Thermal stability of polyimide resins containing siloxane structure and their high temperature structural evolution[J]. Chemical Journal of Chinese Universites,2019,40(1):187-194(in Chinese). doi: 10.7503/cjcu20180342
    [37] LINCOLN J E, HOUT S, FLAHERTY K, et al. High temperature organic/inorganic addition cure polyimide composites, part 1: Matrix thermal properties[J]. Journal of Applied Polymer Science,2008,107(6):3557-3367. doi: 10.1002/app.27463
    [38] LINCOLN J E, MORGAN R J, CURLISS D B. Effect of matrix chemical structure on the thermo-oxidative stability of addition cure poly(imide siloxane) composites[J]. Polymer Composites,2008,29(6):585-596. doi: 10.1002/pc.20428
    [39] 高龙飞, 李松, 肖沅谕, 等. 纤维增强PMR型聚酰亚胺复合材料研究概况[J]. 玻璃钢/复合材料, 2018, 9:106-110.

    GAO L F, LI S, XIAO Y Y, et al. Research overview of fiber reinforced PMR polyimide matrix composites[J]. Fiber Reinforced Plastics/Composites,2018,9:106-110(in Chinese).
    [40] PEI X L, CHEN G F, FANG X Z. Synthesis and properties of poly(imide siloxane) block copolymers with different block lengths[J]. Journal of Applied Polymer Science,2013,129(6):3718-3727. doi: 10.1002/app.38918
    [41] GHOSH A, BANERJEE S. Structure-property co-relationship of fluorinated poly(imide-siloxane)s[J]. Polymers for Advanced Technologies,2008,19(11):1486-1494.
    [42] XU J L, LI H, ZENG K, et al. Curing kinetics and thermal stability of novel siloxane-containing benzoxazines[J]. Thermochimica Acta,2019,671:119-126. doi: 10.1016/j.tca.2018.11.016
    [43] BABANZADEH S, MAHJOUB A R, MEHDIPOUR-ATAEI S. Novel soluble thermally stable silane-containing aromatic polyimides with reduced dielectric constant[J]. Polymer Degradation and Stability,2010,95(12):2492-2498. doi: 10.1016/j.polymdegradstab.2010.08.001
    [44] FANG X M, XIE X Q, SIMONE C D, et al. A solid-state 13C NMR study of the cure of 13C-labeled phenylethynyl end-capped polyimides[J]. Macromolecules,2000,33(5):1671-1681. doi: 10.1021/ma991197m
    [45] GRASSIE N, MACFARLANE I G. The thermal degradation of polysiloxanes-I poly(dimethylsiloxane)[J]. European Polymer Journal,1978,14(11):875-884. doi: 10.1016/0014-3057(78)90084-8
    [46] XU X Z, LIU Y, LAN B W, et al. High thermally stable and melt processable polyimide resins based on phenylethynyl-terminated oligoimides containing siloxane structure[J]. Materials,2020,13(17):3742. doi: 10.3390/ma13173742
    [47] LIU Y, FAN L, XU X, et al. Melt fluidity and thermal property of thermosetting siloxane-containing polyimide resins and their organic/inorganic hybrid characteristics[J]. Materials Today Communications,2020,25:101443. doi: 10.1016/j.mtcomm.2020.101443
    [48] LIU Y, XU X Z, MO S, et al. Long-term thermo-oxidative degradation modeling of a carbon fiber reinforced polyimide composite: Multistep degradation behaviors and kinetics[J]. Chinese Journal of Polymer Science,2020,38:1202-1213. doi: 10.1007/s10118-020-2425-7
    [49] LIU Y, XU X Z, MO S, et al. Kinetic study of the multistep thermo-oxidative degradation of thermosetting siloxane-containing polyimide and unmodified polyimide[J]. Journal of Applied Polymer Science,2020,137:e49021. doi: 10.1002/app.49021
    [50] 刘仪, 莫松, 张国栋, 等. 苯乙炔基封端含硅氧烷结构聚酰亚胺树脂的热稳定性研究//2017年全国高分子学术论文报告会摘要集[J]. 成都, 2017:29.

    LIU Y, MO S, ZHANG G D, et al. Research on the thermal stability of the siloxane containing polyimides// Proceedings of the 2017 National Polymer Academic Paper Conference[J]. Chengdu,2017:29(in Chinese).
  • 加载中
计量
  • 文章访问数:  77
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 录用日期:  2022-04-10
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-04-26

目录

    /

    返回文章
    返回