留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风电叶片新型拉挤夹芯梁帽弯曲性能试验研究

赵东晖 杨家琦 孟鑫淼 张东坡 张展诚

赵东晖, 杨家琦, 孟鑫淼, 等. 风电叶片新型拉挤夹芯梁帽弯曲性能试验研究[J]. 复合材料学报, 2022, 40(0): 1-11
引用本文: 赵东晖, 杨家琦, 孟鑫淼, 等. 风电叶片新型拉挤夹芯梁帽弯曲性能试验研究[J]. 复合材料学报, 2022, 40(0): 1-11
Donghui ZHAO, Jiaqi YANG, Xinmiao MENG, Dongpo ZHANG, Zhancheng ZHANG. Experimental study on flexural performance of novel pultruded sandwich spar caps of wind turbine blades[J]. Acta Materiae Compositae Sinica.
Citation: Donghui ZHAO, Jiaqi YANG, Xinmiao MENG, Dongpo ZHANG, Zhancheng ZHANG. Experimental study on flexural performance of novel pultruded sandwich spar caps of wind turbine blades[J]. Acta Materiae Compositae Sinica.

风电叶片新型拉挤夹芯梁帽弯曲性能试验研究

基金项目: 国家自然科学基金 (51908038)
详细信息
    通讯作者:

    孟鑫淼,博士,讲师,硕士生导师,研究方向为复合材料夹芯结构、竹木结构 E-mail: mengxinmiao@bjfu.edu.cn

  • 中图分类号: TB332, TK83

Experimental study on flexural performance of novel pultruded sandwich spar caps of wind turbine blades

Funds: National Natural Science Foundation of China (51908038)
  • 摘要: 采用玻璃纤维增强树脂复合材料(GFRP)拉挤条板制造风电叶片夹芯梁帽可以克服传统纤维布铺设工艺中存在的褶皱、气泡等制造缺陷,提升材料模量和强度,减少纤维缝编工序和节约材料成本,是未来风电叶片梁帽发展的趋势之一。以GFRP双轴布为面层、GFRP拉挤条板和方格布为夹芯层的叶片主梁梁帽局部梁段作为研究对象。为研究面层厚度及剪跨比对新型拉挤夹芯梁帽承载能力和破坏模式的影响,开展四点弯曲试验。结果表明:随着面层厚度的增加,拉挤夹芯梁帽的破坏模式从无面层试件的拉挤条板拉裂破坏,发展为单层面层试件的面层拉裂或拉断破坏,以及多面层试件的下面层剥离破坏。合理设计面层和夹芯的比例,能够控制夹芯结构的破坏模式;拉挤夹芯梁帽的初始刚度随着面层厚度增加及剪跨比减小而增加;面层厚度的增加可以大幅提升结构的承载能力,延缓胶缝的开裂,减小破坏时的承载力损失,并在一定程度上改善结构的脆性行为。

     

  • 图  1  风电叶片拉挤夹芯梁帽足尺试件

    Figure  1.  Full-scale specimen of pultruded sandwich spar cap cut from wind turbine blade

    图  2  试验加载装置示意图及应变片位置

    Figure  2.  Experimental setup and layout of the strain gauges

    图  3  GFRP拉挤夹芯梁帽破坏现象

    Figure  3.  Failure phenomenon of pultruded GFRP sandwich spar cap

    图  4  GFRP拉挤夹芯梁帽试件荷载-跨中挠度曲线

    Figure  4.  Load-deflection curves at midspan of pultruded GFRP sandwich spar cap specimens

    图  5  GFRP拉挤夹芯梁帽试件荷载-应变曲线

    Figure  5.  Load-strain curves of pultruded GFRP sandwich spar cap specimens

    图  6  GFRP拉挤夹芯梁帽典型试件跨中截面应变分布

    Figure  6.  Strain distribution across the midspan section of typical pultruded GFRP sandwich spar cap specimens

    图  7  GFRP拉挤夹芯梁帽试件破坏模式示意图

    Figure  7.  Schematic of failure modes of pultruded GFRP sandwich spar cap specimens

    图  8  GFRP拉挤夹芯梁帽试件特征荷载对比

    Figure  8.  Comparison of characteristic loads of pultruded GFRP sandwich spar cap specimens

    表  1  GFRP拉挤夹芯梁帽试件材料基本力学性能

    Table  1.   Material properties of pultruded GFRP sandwich spar cap specimens

    Material propertyGFRP(EBX808) (±45°)GFRP(EWR270) (0°/90°)Pultruded GFRP stripEpoxy resin
    Density/(kg·m−3)1930181020301200
    Ex/MPa1250020000570002700
    Ey/MPa1250020000135002700
    Ez/MPa800012000135002700
    νxy0.600.140.270.30
    Gxy/MPa4000875040001039
    Gyz/MPa4000875040001039
    Gzx/MPa4000875040001039
    Xt/MPa230-110065
    Xc/MPa230-85065
    Yt/MPa--6520
    Yc/MPa--13020
    S/MPa56-4025
    Notes: Ex—Longitudinal elastic modulus; Ey, Ez—Transverse elastic modulus; νxy—Poisson's ratio; Gxy, Gyz and Gzx—Shear modulus; Xt—Longitudinal tensile strength; Xc—Longitudinal compressive strength; Yt—Transverse tensile strength; Yc—Transverse compressive strength; S—Shear strength.
    下载: 导出CSV

    表  2  GFRP拉挤夹芯梁帽试件基本参数

    Table  2.   Pultruded GFRP sandwich spar cap specimen geometries

    SpecimenRadius of curvature
    of upper layer/mm
    Width of midspan section/mmHeight of midspan section/mmSpan length of pure bending L/mm
    EBX8080-196532.0237.81216
    EBX8081-1171525.6337.80106
    EBX8081-2177924.9137.79216
    EBX8081-3173925.2638.13318
    EBX8083-1176226.6540.14106
    EBX8083-2176826.7340.06216
    EBX8083-3176825.8340.06318
    EBX8085-1183424.6543.12106
    EBX8085-2185425.2342.98216
    EBX8085-3173927.1443.30318
    Note: EBX8080-1 means the specimen 1 in the group where the number of face sheet piles (with the biaxial fabric EBX808 material) is 0.
    下载: 导出CSV

    表  3  GFRP拉挤夹芯梁帽试件特征荷载及破坏模式

    Table  3.   Characteristic loads and failure modes of pultruded GFRP sandwich spar cap specimens

    SpecimenInitial stiffness/
    (kN·mm−1)
    Initial cracking
    load/kN
    Maximum pointLoad after
    failure/kN
    Crack propagation
    of glue seam
    Final failure position
    of specimen
    Failure
    mode
    Load /kNDeflection
    /mm
    EBX8080-11.183.794.493.900.09Pultruded strip near L2L21
    EBX8081-11.053.213.624.200.55L2、R1
    simultaneously
    L22
    EBX8081-21.273.255.324.690.28R1→L2R12
    EBX8081-31.587.788.545.500R1→L2→L1、R2 simultaneouslyR22
    EBX8083-11.614.026.104.433.44R1→L2L23
    EBX8083-21.625.409.036.075.48R1R13
    EBX8083-31.8110.6516.219.318.96L1→R1→R2→L2R23
    EBX8085-11.616.057.475.345.25L2→R1R13
    EBX8085-21.719.6210.536.598.64R1→L2L23
    EBX8085-31.8914.8919.1710.5816.54L1→R2→R1R23
    下载: 导出CSV
  • [1] 寇海霞. 复合材料风电叶片刚度退化模型研究[D]. 兰州: 兰州理工大学, 2019.

    KOU H X. Research on stiffness degradation model of composite wind turbine blades[D]. Lanzhou: Lanzhou University of Technology, 2019(in Chinese).
    [2] SAHU B K. Wind energy developments and policies in China: a short review[J]. Renewable and Sustainable Energy Reviews,2018,81(1):1393-1405.
    [3] 唐荆. 大型风电复合材料叶片主承力部件结构失效研究[D]. 北京: 中国科学院大学, 2019.

    TANG J. Structural failure of the primary load-carrying component of large composite wind turbine blades[D]. Beijing: University of Chinese Academy of Science, 2019(in Chinese).
    [4] HEGLER S, PLETTEMEIER D. Simulative Investigation of the Radar Cross Section of Wind Turbines[J]. Applied Sciences,2019,9(19):4024. doi: 10.3390/app9194024
    [5] 国家能源局. 2020年度全国可再生能源电力发展监测评价报告[EB/OL], 2021-06-20.

    National Energy Administration. Monitoring and Evaluation Report of National Renewable Energy and Electric Power Development in 2020[EB/OL], 2021-06-20.
    [6] 蔡新, 潘盼, 朱杰, 等. 风力发电机叶片[M]. 北京: 中国水利水电出版社, 2014: 8.

    CAI X, PAN P, ZHU J, et al. Wind turbine blade[M]. Beijing: China Water Power Press, 2014: 8(in Chinese).
    [7] MUTKULE S K, GORAD P P, RAUT S R, et al. Optimum and reliable material for wind turbine blade[J]. International Journal of Engineering Research & Technology,2015,4(2):624-627.
    [8] 许经纬. 碳纤维/玻璃纤维混杂增强复合材料力学性能研究及风电叶片应用[D]. 苏州: 苏州大学, 2019.

    XU J W. Study on mechanical properties of carbon/glass hybridized fabric reinforced composites and applications for wind turbine blades[D]. Suzhou: Soochow University, 2019(in Chinese).
    [9] STEWART R. Wind turbine blade production–new products keep pace as scale increases[J]. Reinforced Plastics,2012,56(1):18-25. doi: 10.1016/S0034-3617(12)70033-4
    [10] BRØNDSTED P, HOLMES J W, SØRENSEN B F. Wind rotor blade materials technology[J]. European sustainable energy review,2008(2):36-41.
    [11] 李成良, 王继辉, 薛忠民, 等. 大型风机叶片材料的应用和发展[J]. 玻璃钢/复合材料, 2008(4):49-52.

    LI C L, WANG J H, XUE Z M, et al. Application and development of materials of large-scale wind turbine blades[J]. Fiber Reinforced Plastics/Composites,2008(4):49-52(in Chinese).
    [12] BAI Y, KELLER T, WU C. Pre-buckling and post-buckling failure at web-flange junction of pultruded GFRP beams[J]. Materials and structures,2013,46(7):1143-1154. doi: 10.1617/s11527-012-9960-9
    [13] CHEN G M, TENG J G, CHEN J F, et al. Finite element modeling of debonding failures in FRP-strengthened RC beams: A dynamic approach[J]. Computers & Structures,2015,158:167-183.
    [14] FENG P, LI Z Y, WANG J, et al. Novel joint for pultruded FRP beams and concrete-filled FRP columns: Conceptual and experimental investigations[J]. Composite Structures,2022,287:115339. doi: 10.1016/j.compstruct.2022.115339
    [15] Martin R W, Sabato A, Schoenberg A, et al. Comparison of nondestructive testing techniques for the inspection of wind turbine blades' spar caps[J]. Wind Energy,2018,21(11):980-996. doi: 10.1002/we.2208
    [16] 马志勇. 大型风电叶片结构设计方法研究[D]. 北京: 华北电力大学, 2011.

    MA Z Y. Research on large-scale wind turbine blade structure design method[D]. Beijing: North China Electric Power University, 2011(in Chinese).
    [17] GRIFFIN D, MALKIN M. Lessons learned from recent blade failures: primary causes and risk-reducing technologies// 49 th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition[J]. Orlando:American Institute of Aeronautics and Astronautics,2011,259:1-9.
    [18] MISHNAEVSKY L, BRANNER K, PETERSEN H N, et al. Materials for wind turbine blades: an overview[J]. Materials,2017,10(11):1285. doi: 10.3390/ma10111285
    [19] 冯鹏. 新型FRP空心桥面板的设计开发与受力性能研究[D]. 北京: 清华大学, 2004.

    FENG P. Development and study on an innovative FRP bridge deck[D]. Beijing: Tsinghua University, 2004(in Chinese).
    [20] 齐玉军, 熊伟, 刘伟庆, 等. 新型FRP拉挤夹芯型材及其结构应用初探[J]. 玻璃钢/复合材料, 2014(12):25-30.

    QI Y J, XIONG W, LIU W Q, et al. A review on innovative pultruded FRP composite sandwich profiles and structural utilization[J]. Fiber Reinforced Plastics/Composites,2014(12):25-30(in Chinese).
    [21] LIU T Q, FENG P, WU Y W, et al. Developing an innovative curved-pultruded large-scale GFRP arch beam[J]. Composite Structures,2021,256:113111. doi: 10.1016/j.compstruct.2020.113111
    [22] ZHAO D H, LIU T Q, LU X F, et al. Experimental and numerical analysis of a novel curved sandwich panel with pultruded GFRP strip core[J]. Composite Structures,2022,288:115404. doi: 10.1016/j.compstruct.2022.115404
    [23] WU C, TIAN J, DING Y, et al. Axial compression behavior of pultruded GFRP channel sections[J]. Composite Structures,2022,289:115438. doi: 10.1016/j.compstruct.2022.115438
    [24] 何东晓, 黄力刚, 杨松, 等. 我国复合材料风机叶片的几种制造工艺与发展前景[J]. 纤维复合材料, 2007(2): 12-14.

    HE D X, HUANG L G, YANG S, et al. The outlook and manufacturing process of composite turbine rotor blades[J]. Fiber Composites, 200(2): 12-14(in Chinese).
    [25] YARBROUGH A A, GEIGER S B, CARUSO C D. Methods for manufacturing a spar cap for a wind turbine rotor blade[P]. U. S. Patent 14/552, 518, 2016-5-26.
    [26] GIROLAMO D, KRISTENSEN J J Ø, NOERLEM M. Pultruded fibrous composite strips having corrugated profiles for wind turbine blade spar caps[P]. U. S. Patent 16/218, 631 2019-6-27.
    [27] VEDERNIKOV A, SAFONOV A, TUCCI F, et al. Pultruded materials and structures: A review[J]. Journal of Composite Materials,2020,54(26):4081-4117. doi: 10.1177/0021998320922894
    [28] Rao B V. A study towards the optimization of pultrusion processes: process-microstructure-property correlation[D]. Enschede: University of Twente, 2021.
    [29] 柴红梅, 袁凌, 李颖, 等. 复合材料风电叶片先进制造技术研究现状[J]. 玻璃钢/复合材料, 2019(2):102-107.

    CHAI H M, YUAN L, LI Y, et al. Present research situation of advanced technology in composite wind blade[J]. Fiber Reinforced Plastics/Composites,2019(2):102-107(in Chinese).
    [30] ERTURK E. Preliminary Analysis of a Concept Wind Turbine Blade with Piecewise Constant Chord and Constant Twist Angle Using BEM Method[J]. International Journal of Renewable Energy Research (IJRER),2018,8(4):1890-1902.
    [31] 张为军, 田野, 覃兆平, 等. 桥梁用大截面FRP拉挤型材的结构设计与试验研究[J]. 玻璃钢/复合材料, 2013(9):55-60.

    ZHANG W J, TIAN Y, QIN Z P, et al. The research of large cross-section FRP pultrusion profiles structural design and type testing in bridge[J]. Fiber Reinforced Plastics/Composites,2013(9):55-60(in Chinese).
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 录用日期:  2022-06-03
  • 修回日期:  2022-06-01
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回