留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光响应的三维石墨烯/氧化钴复合催化剂及其光解水制氢性能

万星晨 何美玉 王伟雅 刘洪燕 张素玲 卢艳红

万星晨, 何美玉, 王伟雅, 等. 可见光响应的三维石墨烯/氧化钴复合催化剂及其光解水制氢性能[J]. 复合材料学报, 2023, 40(5): 2836-2846. doi: 10.13801/j.cnki.fhclxb.20220803.005
引用本文: 万星晨, 何美玉, 王伟雅, 等. 可见光响应的三维石墨烯/氧化钴复合催化剂及其光解水制氢性能[J]. 复合材料学报, 2023, 40(5): 2836-2846. doi: 10.13801/j.cnki.fhclxb.20220803.005
WAN Xingchen, HE Meiyu, WANG Weiya, et al. 3D graphene/CoO and the photocatalytic properties for hydrogen evolution from water splitting under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2836-2846. doi: 10.13801/j.cnki.fhclxb.20220803.005
Citation: WAN Xingchen, HE Meiyu, WANG Weiya, et al. 3D graphene/CoO and the photocatalytic properties for hydrogen evolution from water splitting under visible light irradiation[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2836-2846. doi: 10.13801/j.cnki.fhclxb.20220803.005

可见光响应的三维石墨烯/氧化钴复合催化剂及其光解水制氢性能

doi: 10.13801/j.cnki.fhclxb.20220803.005
基金项目: 河北省自然科学基金项目(E2020408004;B2022408005);河北省人才工程培养资助项目(A201901064);河北省高等教育教学改革研究与实践项目(2019 GJJG357);大中学生科技创新能力培育专项项目(2021 H100402);大学生创新创业训练计划项目(202110100001)
详细信息
    通讯作者:

    卢艳红,博士,教授,硕士生导师,研究方向为碳纳米材料在能源领域中的应用研究 E-mail: luyanhong@lfnu.edu.cn

  • 中图分类号: O643

3D graphene/CoO and the photocatalytic properties for hydrogen evolution from water splitting under visible light irradiation

Funds: Natural Science Foundation of Hebei Province of China (E2020408004; B2022408005); Hebei Talent Engineering Training Support Project (A201901064); Hebei Higher Education Teaching Reform Research and Practice Project (2019 GJJG357); Project of Cultivating Scientific and Technological Innovation Capacities of College and Middle School Students (2021 H100402); Undergraduate Innovation and Entrepreneurship Training Program of Hebei Province (202110100001)
  • 摘要: 以新型二维材料氧化石墨烯和金属有机框架化合物ZIF-67为前驱体,通过溶剂热反应和高温焙烧过程,制备了一种三维交联石墨烯负载CoO纳米粒子(3D G/CoO)的复合催化剂材料。XRD、XPS、紫外可见漫反射、SEM和TEM等结构和形貌分析结果表明:平均粒径约为34.5 nm的CoO粒子均匀负载在三维交联石墨烯体相骨架中。三维石墨烯特有的光致热电子发射性能及两种材料间的协同作用,赋予了复合材料优异的光催化分解水制氢性能。在300 W氙灯照射下,催化分解水制氢速率为10.1 mmol·gcat−1·h−1;在520 nm波长可见光照射下,获得了7.77%的表观量子效率。催化剂循环使用5次,活性保持率为88%。此高性能可见光响应的三维复合催化剂材料的研究,对光催化领域中新型高效催化剂的开发和应用具有重要意义。

     

  • 图  1  3D石墨烯/CoO(3D G/CoO)复合材料的制备流程图

    ZIF-67—Metal organic framework; GO—Graphene oxide

    Figure  1.  Schematic of the preparation process of 3D graphene/CoO (3D G/CoO) composites

    图  2  (a) ZIF-67样品的XRD图谱;(b) 3D G/CoO及3D G的XRD图谱

    Figure  2.  (a) XRD patterns of ZIF-67 sample; (b) XRD patterns of 3D G/CoO and 3D G

    图  3  3D G/CoO材料的XPS图谱:(a) XPS全谱;(b) C1s;(c) Co2p

    Sat.—Satellite peak

    Figure  3.  XPS spectra of 3D G/CoO: (a) Survey spectrum; (b) C1s; (c) Co2p

    图  4  ZIF-67 (a) 和3D G/CoO ((b)~(d))材料的SEM图像 (图4(b)中的插图为3D G/CoO材料的光学照片)

    Figure  4.  SEM images of ZIF-67 (a) and 3D G/CoO ((b)-(d)) (Inset is the optical photograph of 3D G/CoO in Fig.4(b))

    图  5  3D G/CoO材料的TEM ((a), (b))、HRTEM (c)和粒径分布统计图(d)

    d—Lattice spacing

    Figure  5.  TEM images ((a), (b)), HRTEM image (c) and particle size distribution (d) for 3D G/CoO

    图  6  3D G/CoO及对照材料的光催化分解水制氢性能:((a), (b)) 紫外-可见光下;(c) 350 nm和520 nm波长光下;(d) 催化剂循环使用性能;((e), (f)) 3D G/CoO固体紫外吸收光谱及对应的能带结构图

    α—Absorption coefficient;—Photon energy

    Figure  6.  Hydrogen production activity of 3D G/CoO and control material: ((a), (b)) Under UV-vis light; (c) Under simple wavelength light of 350 nm and 520 nm; (d) Cycling performance of catalyst; ((e), (f)) UV-vis absorbance spectra and the Kubelka-Munk transformation curves of 3D G/CoO

    图  7  3D G/CoO材料的光催化分解水制氢反应机制

    Ox—Oxidizing agent

    Figure  7.  Reaction mechanism of photocatalytic hydrogen production from water splitting based on 3D G/CoO

    表  1  样品的命名

    Table  1.   Naming of sample

    Sample GO/mL ZIF-67/mg
    3D G 30
    3D G/CoO 30 120
    A-Co 120
    A-3 30 7.5
    A-4 30 30
    下载: 导出CSV

    表  2  3D G/CoO材料与已报道的光催化剂的催化分解水制氢性能对比

    Table  2.   Comparison of hydrogen production rate between 3D G/CoO and the reported works

    CatalystHydrogen production rate/(mmol·gcat−1·h−1)Excitation wavelength/nmSacrificial agentRef.
    TiO2/rGO-COOH0.25>400[34]
    TPA-CH2OH-rGO19369CH3CH2OH[35]
    MoS2/g-C3N46.24×10−3>400[36]
    TiO2/rGO0.66800>λ>420TEOA[37]
    CdS/GO2.31420CH3OH[38]
    N-rGO/Pyridine co-g-C3N43.04>420TEOA[39]
    Pt-rGO/ZnIn2S4CoPi/BiVO40.899>420CH3CH2OH[40]
    Ag-NaTaO3-rGO3.95400Na2S, Na2SO3[41]
    TiO2/Graphene0.086>400Na2S, Na2SO3[42]
    Co-P/Graphene24.5430TEOA[43]
    Pt/K2La2Ti3O100.468365CH3OH[44]
    3D G/CoO10.1520CH3OHThis work
    Notes: rGO-COOH—Reduced carboxyl-graphene oxide; rGO—Reduced graphene oxide; TEOA—Training and evaluation objectives annex; N-rGO—N-reduced graphene oxide; TPA—4-(N, N-diphenylamine)benzyl.
    下载: 导出CSV

    表  3  不同光照条件下3D G/CoO催化分解水制氢的表观量子效率(AQE)

    Table  3.   Apparent quantum efficiency (AQE) of 3D G/CoO for hydrogen production from water splitting under different irradiation conditions

    Wavelength of incident light/nmLight intensity/mWAQE/%
    3501006.436.96
    520 103.487.77
    下载: 导出CSV
  • [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38. doi: 10.1038/238037a0
    [2] HAN Z J, QIU F, EISENBERG R, et al. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst[J]. Science,2012,338(6112):1321-1324. doi: 10.1126/science.1227775
    [3] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116:7159-7329.
    [4] WANG X K, LIU J, ZHANG L, et al. Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO2 photoreduction[J]. ACS Catalysis,2019,9:1726-1732. doi: 10.1021/acscatal.8b04887
    [5] WU Y P, ZHOU W, ZHAO J, et al. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2017,56:13001-13005. doi: 10.1002/anie.201707238
    [6] LU J Q, ZHANG J, CHEN Q, et al. Porous CuS/ZnS microspheres derived from a bimetallic metal-organic framework as efficient photocatalysts for H2 production[J]. Journal of Photochemistry and Photobiology A-Chemistry,2019,380:111853.
    [7] LIN Y Z, WANG K, ZHANG Y, et al. Metal-organic framework-derived CdS-NiO heterostructures with modulated morphology and enhanced photocatalytic hydrogen evolution activity in pure water[J]. Journal of Materials Che-mistry C,2020,8:10071-10077. doi: 10.1039/C9TC07042G
    [8] LI N X, HUANG H L, BIBI R, et al. Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution[J]. Applied Surface Science,2019,476:378-386. doi: 10.1016/j.apsusc.2019.01.105
    [9] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews,2009,38:253-278. doi: 10.1039/B800489G
    [10] 潘金波, 申升, 周威, 等. 光催化制氢研究进展[J]. 物理化学学报, 2020, 36(3):1905068. doi: 10.3866/PKU.WHXB201905068

    PAN Jinbo, SHEN Sheng, ZHOU Wei, et al. Recent progress in photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica,2020,36(3):1905068(in Chinese). doi: 10.3866/PKU.WHXB201905068
    [11] XIANG Q J, YU J G, JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41:782-796. doi: 10.1039/C1CS15172J
    [12] XIAO N, LI S S, LI X L, et al. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen[J]. Chinese Journal of Catalysis,2020,41:642-671. doi: 10.1016/S1872-2067(19)63469-8
    [13] JIA Y L, WANG Z Z, QIAO X Q, et al. A synergistic effect between S-scheme heterojunction and noble-metal free cocatalyst to promote the hydrogen evolution of ZnO/CdS/MoS2 photocatalyst[J]. Chemical Engineering Journal,2021,424:130368. doi: 10.1016/j.cej.2021.130368
    [14] ZHANG Z W, LI Q H, QIAO X Q, et al. One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation[J]. Chinese Journal of Catalysis,2019,40:371-379. doi: 10.1016/S1872-2067(18)63178-X
    [15] ZHANG X Y, LI H P, CUI X L, et al. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting[J]. Journal of Materials Chemistry C,2010,20:2801-2806. doi: 10.1039/b917240h
    [16] LI Q, GUO B D, YU J G, et al. Highly efficient visible light driven photocatalytic hydrogen production of CdS cluster decorated graphene nanosheets[J]. Journal of the American Chemical Society,2011,133:10878-10884. doi: 10.1021/ja2025454
    [17] IWASE A, YOSHINO S, TAKAYAMA T, et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator[J]. Journal of the American Chemical Society,2016,138:10260-10264. doi: 10.1021/jacs.6b05304
    [18] XIANG Q J, YU J G, JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society,2012,134:6575-6578. doi: 10.1021/ja302846n
    [19] CHANG K, MEI Z W, WANG T, et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J]. ACS Nano,2014,8(7):7078-7087. doi: 10.1021/nn5019945
    [20] KUMAR D P, HONG S, REDDY D A, et al. Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,2017,212:7-14. doi: 10.1016/j.apcatb.2017.04.065
    [21] XIANG Q J, CHENG F Y, LANG D. Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution[J]. ChemSusChem,2016,9:996-1002. doi: 10.1002/cssc.201501702
    [22] LI W, WANG X, LI M, et al. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution[J]. Applied Catalysis B: Environmental,2020,268:118384. doi: 10.1016/j.apcatb.2019.118384
    [23] LI W, WANG X, MA Q, et al. CdS@h-BN heterointerface construction on reduced graphene oxide nanosheets for hydrogen production[J]. Applied Catalysis B: Environmental,2021,284:119688. doi: 10.1016/j.apcatb.2020.119688
    [24] LIU Y X, XU X J, ZHANG S F, et al. Ni single atoms anchored on nitrogen-doped graphene as H2-evolution cocatalyst of SrTiO3(Al)/CoOx for photocatalytic overall water splitting[J]. Carbon,2021,183:763-773. doi: 10.1016/j.carbon.2021.07.064
    [25] LU Y H, YANG Y, ZHANG T F, et al. Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis[J]. ACS Nano,2016,10(11):10507-10515. doi: 10.1021/acsnano.6b06472
    [26] LU Y H, MA B, YANG Y, et al. High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production[J]. Nano Research,2017,10(5):1662-1672. doi: 10.1007/s12274-016-1390-5
    [27] ZHANG T F, CHANG H C, WU Y P, et al. Macroscopic and direct light propulsion of bulk graphene material[J]. Nature Photonics,2015,9:471-477. doi: 10.1038/nphoton.2015.105
    [28] ZHANG L, LIANG J J, HUANG Y, et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation[J]. Carbon,2009,47(14):3365-3380. doi: 10.1016/j.carbon.2009.07.045
    [29] LU Y H, ZHANG F, ZHANG T F, et al. Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double N precursor[J]. Carbon,2013,63:508-516. doi: 10.1016/j.carbon.2013.07.026
    [30] BHATTACHARYAA P, JOO T, KOTAA M, et al. CoO nanoparticles deposited on 3D macroporous ozonized RGO networks for high rate capability and ultralong cyclability of pseudocapacitors[J]. Ceramics International,2018,44(1):980-987. doi: 10.1016/j.ceramint.2017.10.032
    [31] SUN Y M, HU X L, LUO W, et al. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries[J]. Journal of Physical Chemistry C,2012,116(39):20794-20799. doi: 10.1021/jp3070147
    [32] WU Y P, YI N B, HUANG L, et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio[J]. Nature Communications,2015,6:1-9.
    [33] SHI W L, GUO F, WANG H B, et al. Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental,2017,219:36-44. doi: 10.1016/j.apcatb.2017.07.019
    [34] 王苹, 李海涛, 曹艳洁, 等. 羧基功能化石墨烯增强TiO2光催化产氢性能[J]. 物理化学学报, 2021, 37(6):200804.

    WANG Ping, LI Haitao, CAO Yanjie, et al. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst[J]. Acta Physico-Chimica Sinica,2021,37(6):200804(in Chinese).
    [35] 董玉培, 牟志刚, 杜玉扣, 等. 4-二苯胺基苯甲醇功能化石墨烯的制备、电子传递及光催化性能[J]. 化学学报, 2011, 69(20):2379-2384.

    DONG Yupei, MOU Zhigang, DU Yukou, et al. Preparation, electron transfer and photocatalysis of 4-(N, N-diphenylamine)benzyl alcohol functionalized graphene[J]. Acta Chimica Sinica,2011,69(20):2379-2384(in Chinese).
    [36] 贾并泉, 叶斌, 赵伟, 等. 金属相1 T′ MoS2增强类石墨相C3N4的可见光催化性能[J]. 高等学校化学学报, 2021, 42(2):615-623. doi: 10.7503/cjcu20200626

    JIA Bingquan, YE Bin, ZHAO Wei, et al. Metallic 1 T′ MoS2 boosts graphitic C3N4 for efficient visible-light photocatalysis[J]. Chemical Journal of Chinese Universities,2021,42(2):615-623(in Chinese). doi: 10.7503/cjcu20200626
    [37] 郭宇, 李燕瑞, 王成名, 等. TiO2/石墨烯复合材料的光生电荷分离调控与光催化产氢性能研究[J]. 化学学报, 2019, 77:520-524. doi: 10.6023/A19040108

    GUO Yu, LI Yanrui, WANG Chengming, et al. Photogenerated charge separation and photocatalytic hydrogen production of TiO2/graphene composite materials[J]. Acta Chimica Sinica,2019,77:520-524(in Chinese). doi: 10.6023/A19040108
    [38] WANG Z J, LIU Z, CHEN J Z, et al. Self-assembly of three-dimensional CdS nanosphere/graphene networks for efficient photocatalytic hydrogen evolution[J]. Journal of Energy Chemistry,2019,31:34-38. doi: 10.1016/j.jechem.2018.05.006
    [39] 程若霖, 金锡雄, 樊向前, 等. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7):1436-1445. doi: 10.3866/PKU.WHXB201704076

    CHENG Ruolin, JIN Xixiong, FAN Xiangqian, et al. Incorporation of N-doped reduced graphene oxide into pyridine-copolymerized g-C3N4 for greatly enhanced H2 photocatalytic evolution[J]. Acta Physico-Chimica Sinica,2017,33(7):1436-1445(in Chinese). doi: 10.3866/PKU.WHXB201704076
    [40] 李向群, 司瑞如. 一种以还原氧化石墨烯为电子中继体的复合光催化剂的合成及光催化性能研究[J]. 化学通报, 2020, 839(11):1019-1024.

    LI Xiangqun, SI Ruiru. Synthesis and photocatalytic pro-perties of a composite photocatalyst with reduced graphene oxide as electron mediator[J]. Chemistry Bulletin,2020,839(11):1019-1024(in Chinese).
    [41] 何慧娟, 张斌, 钟梓俊, 等. Ag-NaTaO3-RGO 复合物的合成及其改进的光催化制氢性能[J]. 无机化学学报, 2018, 32(2):397-403. doi: 10.11862/CJIC.2018.015

    HE Huijuan, ZHANG Bin, ZHONG Zijun, et al. Ag-NaTaO3-RGO composite: Synthesis and improved photocatalytic hydrogen production property[J]. Chinese Journal of Inorganic Chemistry,2018,32(2):397-403(in Chinese). doi: 10.11862/CJIC.2018.015
    [42] 张晓艳, 李浩鹏, 崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性[J]. 无机化学学报, 2009, 25(11):1903-1907. doi: 10.3321/j.issn:1001-4861.2009.11.003

    ZHANG Xiaoyan, LI Haopeng, CUI Xiaoli. Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite[J]. Chinese Journal of Inorga-nic Chemistry,2009,25(11):1903-1907(in Chinese). doi: 10.3321/j.issn:1001-4861.2009.11.003
    [43] 郭跃萍, 吕功煊. 原位合成石墨烯负载的Co-P催化剂及光解水制氢[J]. 无机化学学报, 2016, 32(7):1177-1182. doi: 10.11862/CJIC.2016.152

    GUO Yueping, LV Gongxuan. In situ synthesis of Co-P/GP photocatalysts for H2 evolution from water[J]. Chinese Journal of Inorganic Chemistry,2016,32(7):1177-1182(in Chinese). doi: 10.11862/CJIC.2016.152
    [44] 崔文权, 刘利, 冯良荣, 等. Pt/K2La2Ti3O10催化剂的合成及其光催化分解甲醇水溶液制氢[J]. 中国科学B辑:化学, 2006, 36(2):139-144.

    CUI Wenquan, LIU Li, FENG Liangrong, et al. Synthesis of Pt/K2La2Ti3O10 catalyst and its photocatalytic decomposition of methanol aqueous solution to hydrogen[J]. Science in China Series B: Chemistry,2006,36(2):139-144(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  884
  • HTML全文浏览量:  427
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 修回日期:  2022-07-07
  • 录用日期:  2022-07-15
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回