留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯包覆导电炭黑/氧化铟复合材料的制备及其在铅酸电池中的应用

刘飞 陈远强 刘永川 陈素晶 张易宁

刘飞, 陈远强, 刘永川, 等. 聚吡咯包覆导电炭黑/氧化铟复合材料的制备及其在铅酸电池中的应用[J]. 复合材料学报, 2022, 39(12): 5747-5757. doi: 10.13801/j.cnki.fhclxb.20211231.001
引用本文: 刘飞, 陈远强, 刘永川, 等. 聚吡咯包覆导电炭黑/氧化铟复合材料的制备及其在铅酸电池中的应用[J]. 复合材料学报, 2022, 39(12): 5747-5757. doi: 10.13801/j.cnki.fhclxb.20211231.001
LIU Fei, CHEN Yuanqiang, LIU Yongchuan, et al. Preparation of polypyrrole coated with conductive carbon black/indium oxide composite and its application in lead-acid batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5747-5757. doi: 10.13801/j.cnki.fhclxb.20211231.001
Citation: LIU Fei, CHEN Yuanqiang, LIU Yongchuan, et al. Preparation of polypyrrole coated with conductive carbon black/indium oxide composite and its application in lead-acid batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5747-5757. doi: 10.13801/j.cnki.fhclxb.20211231.001

聚吡咯包覆导电炭黑/氧化铟复合材料的制备及其在铅酸电池中的应用

doi: 10.13801/j.cnki.fhclxb.20211231.001
基金项目: 中科院STS区域重点项目(KFJ-STS-QYZD-2021-09-001);福建省STS计划配套项目(2021T3036;2020T3004;2019T3017;2020T3030);福建省引导性项目(2020H0040);泉州市科技项目(2020G17)
详细信息
    通讯作者:

    张易宁,博士,研究员,博士生导师,研究方向为储能材料与器件 E-mail: ynzhang@fjirsm.ac.cn

  • 中图分类号: TB3333;TQ152

Preparation of polypyrrole coated with conductive carbon black/indium oxide composite and its application in lead-acid batteries

  • 摘要: 为了改善铅酸电池负极不可逆硫酸盐化及析氢问题,通过原位化学聚合的方法制备导电炭黑/氧化铟表面包覆聚吡咯[PPy@(C/In2O3)]复合材料,采用SEM、FTIR、BET和XRD等表征手段分别对复合材料的微观形貌和结构进行分析;通过循环伏安法(CV)和线性扫描法(LSV)测试了复合材料的电化学性能。最后,将PPy@(C/In2O3)复合材料添加到铅酸电池负极活性材料中,探究PPy@(C/In2O3)对铅酸电池高倍率部分荷电状态(HRPSoC)循环寿命及放电容量的影响。结果表明:PPy@(C/In2O3)保留了导电炭黑的基本结构特征,具有较大比表面积;同时具有较高析氢过电位及较大比容量。当将PPy@(C/In2O3)复合材料添加到铅酸电池负极活性材料中,不仅可以降低负极板内阻抑制电池的负极硫酸盐化问题,而且可以减弱电池负极析氢问题,在提高铅酸电池放电容量同时,显著提高了铅酸电池高倍率部分荷电状态循环寿命。最终,含有PPy@(C/In2O3)的负极板的铅酸电池显示出了优异的HRPSoC循环寿命,较空白组电池循环寿命提高了1.78倍。

     

  • 图  1  铅酸电池负极板的制备流程图

    Figure  1.  Preparation process of lead-acid battery negative plate

    图  2  (a) 铅酸电池极板及超细玻璃纤维(AGM)隔膜;(b) 电池封装;(c) 待测电池

    Figure  2.  (a) Lead-acid battery plates and absorbent glass mat (AGM) separator; (b) Battery encapsulation; (c) Test battery

    图  3  铅酸电池的高倍率部分荷电状态循环寿命性能测试程序

    Figure  3.  High-rate partial state-of-charge cycle life performance test program for lead-acid batteries

    Ich—Constant current charging current; Id—Constant current discharge current; SoC—State-of-charge

    图  4  C (a)、PPy (b) 及PPy@(C/In2O3) (c) 的SEM图像;PPy@(C/In2O3)的EDS映射分布: C元素 (d) 和In元素 (e)

    Figure  4.  SEM images of C (a), PPy (b) and PPy@(C/In2O3) (c); EDS mapping of the obtained PPy@(C/In2O3): C (d) and In (e)

    图  5  PPy@(C/In2O3)、PPy和C的氮气吸附/脱附等温曲线

    Figure  5.  Nitrogen adsorption/desorption isothermal curves of PPy@(C/In2O3), PPy and C

    图  6  (a) PPy@(C/In2O3)、PPy和C的FTIR图谱;(b) PPy@(C/In2O3)、PPy、C及In2O3的XRD图谱

    Figure  6.  (a) FTIR spectra of PPy@(C/In2O3), PPy and C; (b) XRD patterns of PPy@(C/In2O3), PPy, C and In2O3

    图  7  10 mV/s扫速下−0.8~0.0 V电压范围内EC、EPPy@(C/In2O3)及EPPy的CV曲线

    Figure  7.  CV curves of EC, EPPy@(C/In2O3) and EPPy in the range of −0.8-0.0 V at a scanning rate of 10 mV/s

    EPPy@(C/In2O3), EPPy and EC—Working electrode prepared by PPy@(C/In2O3), PPy and C additive

    图  8  5 mV/s扫速下−1.6~−1.1 V电压范围内EC、EPPy@(C/In2O3)及EPPy的线性扫描伏安(LSV)曲线

    Figure  8.  Linear sweep voltammetry (LSV) curves of EC, EPPy@(C/In2O3) and EPPy from −1.6-−1.1 V at a scanning rate of 5 mV/s

    图  9  分别添加C (a)、PPy (b) 及PPy@(C/In2O3) (c) 负极板活性物质微观结构

    Figure  9.  Microstructures of negative plate active material adding C (a), PPy (b) and PPy@(C/In2O3) (c), respectively

    图  10  ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $、LPPy及LC的Nyquist图

    Figure  10.  Nyquist plots of test batteries of ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $, LPPy and LC

    ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $, LPPy and LC—Lead-acid battery prepared by PPy@(C/In2O3), PPy and C additive

    图  11  ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $、LPPy及LC在0.1 A·s倍率下的放电容量曲线

    Figure  11.  Discharge capacity curves of ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $, LPPy and LC at 0.1 A·s

    图  12  ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $、LPPy及LC充放电电压在1 A·s条件下随高倍率部分荷电状态(HRPSoC)循环寿命的变化

    Figure  12.  Change of end-of-charge/discharge voltage as a function of the high-rate partial-state-of-charge (HRPSoC) cycle life for ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $, LPPy and LC at 1 A·s

    图  13  LC (a)、LPPy (b) 及${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}}$(c) HRPSoC循环测试结束后负极板的SEM图像

    Figure  13.  SEM images of negative plates after the HRPSoC cycle of LC (a), LPPy (b) and ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $ (c)

    图  14  ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $、LPPy及LC HRPSoC循环测试结束后负极板的XRD图谱

    Figure  14.  XRD patterns of negative plates of ${{\text{L}}_{\text{PPy@(C/I}{{\text{n}}_{\text{2}}}{{\text{O}}_{\text{3}}}\text{)}}} $, LPPy and LC after the HRPSoC cycle

  • [1] BALLANTYNE A D, HALLETT J P, RILEY D J, et al. Lead acid battery recycling for the twenty-first century[J]. Royal Society Open Science,2018,5(5):171368. doi: 10.1098/rsos.171368
    [2] YANG J, HU C, WANG H, et al. Review on the research of failure modes and mechanism for lead-acid batteries[J]. International Journal of Energy Research,2017,41(3):336-352. doi: 10.1002/er.3613
    [3] LAM L T, HAIGH N P, PHYLAND C G, et al. Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2004,133(1):126-134. doi: 10.1016/j.jpowsour.2003.11.048
    [4] LAM L T, LOUEY R, HAIGH N P, et al. VRLA ultrabattery for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2007,174(1):16-29. doi: 10.1016/j.jpowsour.2007.05.047
    [5] HARIPRAKASH B, GAFFOOR S A, SHUKLA A K. Lead-acid batteries for partial-state-of-charge applications[J]. Jour-nal of Power Sources,2009,191(1):149-153. doi: 10.1016/j.jpowsour.2008.12.081
    [6] MOSELEY P T, NELSON R F, HOLLENKAMP A F. The role of carbon in valve-regulated lead-acid battery technology[J]. Journal of Power Sources,2006,157(1):3-10. doi: 10.1016/j.jpowsour.2006.02.031
    [7] FURUKAWA J, TAKADA T, MONMA D, et al. Further demonstration of the VRLA-type ultra-battery under medium-HEV duty and development of the flooded-type ultra-battery for micro-HEV applications[J]. Journal of Power Sources,2010,195(4):1241-1245. doi: 10.1016/j.jpowsour.2009.08.080
    [8] JIANG H, ZHAO T, MA J, et al. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors[J]. Chemical Communications,2011,47(4):1264-1266. doi: 10.1039/C0CC04134C
    [9] PAVLOV D, NIKOLOV P. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling[J]. Journal of Power Sources,2013,242(Complete):380-399.
    [10] BODEN D P, LOOSEMORE D V, SPENCE M A, et al. Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2010,195(14):4470-4493. doi: 10.1016/j.jpowsour.2009.12.069
    [11] NAKAMURA K, SHIOMI M, TAKAHASHI K, et al. Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources,1996,59(1-2):153-157. doi: 10.1016/0378-7753(95)02317-8
    [12] RUETSCHI P. Aging mechanisms and service life of lead-acid batteries[J]. Journal of Power Sources,2004,127(1-2):33-44. doi: 10.1016/j.jpowsour.2003.09.052
    [13] SUBBURAJ A S, PUSHPAKARAN B N, BAYNE S B. Overview of grid connected renewable energy based battery projects in USA[J]. Renewable & Sustainable Energy Reviews,2015,45:219-234.
    [14] FERNANDEZ M, VALENCIANO J, TRINIDAD F, et al. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications[J]. Journal of Power Sources,2010,195(14):4458-4469. doi: 10.1016/j.jpowsour.2009.12.131
    [15] PAVLOV D, NIKOLOV P, ROGACHEV T. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part II. Effect of carbon additives on the processes of charge and discharge of negative plates[J]. Journal of Power Sources,2010,195(14):4444-4457. doi: 10.1016/j.jpowsour.2009.12.132
    [16] PAVLOV D, NIKOLOV P, ROGACHEV T. Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance[J]. Journal of Power Sources,2011,196(11):5155-5167. doi: 10.1016/j.jpowsour.2011.02.014
    [17] XIANG J Y, DING P, ZHANG H, et al. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2013,241:150-158. doi: 10.1016/j.jpowsour.2013.04.106
    [18] BANERJEE A, ZIV B, SHILINA Y, et al. Single-wall carbon nanotube doping in lead-acid batteries: A new horizon[J]. ACS Applied Materials& Interfaces,2017,9(4):3634-3643.
    [19] SWOGGER S W, EVERILL P, DUBEY D P, et al. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources,2014,261:55-63.
    [20] BULOCK K R, MAHATO B K, WRUCK W J. Use of conductive materials to enhance lead-acid battery formation[J]. Journal of the Electrochemical Society,1991,138(12):3545. doi: 10.1149/1.2085456
    [21] LI Z, CHEN B, WANG D. Effects of electrochemically active carbon and indium (III) oxide in negative plates on cycle performance of valve-regulated lead-acid batteries during high-rate partial-state-of-charge operation[J]. Journal of Power Sources,2013,231:34-38.
    [22] 郎笑石. 高倍率储能Pb-C超级电池负极的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

    LANG Xiaoshi. Study on the negative electrode of high rated energy storage Pb-C super battery[D]. Haerbin: Harbin Institute of Technology, 2011(in Chinese).
    [23] ZHOU W, LU L, CHEN D, et al. Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties[J]. Journal of Materials Chemistry B, 2018, 19: 3128-3135.
    [24] WANG F, LV X, ZHANG L, et al. Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor[J]. Journal of Power Sources,2018,393:169-176.
    [25] WANG J G, WEI B, KANG F. Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors[J]. RSC Advances,2013,4(1):199-202.
    [26] 候辰, 吕志, 肖湘, 等. 原位包覆导电聚吡咯的Li1.26Fe0.22Mn0.52O2富锂铁锰基正极材料的制备及电化学性能的提高[J]. 无机化学学报, 2021, 37(5):875-885. doi: 10.11862/CJIC.2021.110

    HOU Chen, LV Zhi, XIAO Xiang, et al. Preparation and improvement of electrochemical performance of Li1.26Fe0.22Mn0.52O2 Fe-Mn based Li-rich cathode materials in-situ coated with conductive polypyrrole[J]. Chinese Journal of Inorganic Chemistry,2021,37(5):875-885(in Chinese). doi: 10.11862/CJIC.2021.110
    [27] CHEN C, LIU Y, CHEN Y, et al. Effect of polyaniline-modified lignosulfonate added to the negative active material on the performance of lead-acid battery[J]. Electrochimic Acta,2020,338:135859. doi: 10.1016/j.electacta.2020.135859
    [28] 朱嫦娥, 任丽, 王立新, 等. 炭黑吸附聚合制备聚吡咯/炭黑导电复合材料[J]. 复合材料学报, 2005, 22(3):45-48. doi: 10.3321/j.issn:1000-3851.2005.03.009

    ZHU Chang‘e, REN Li, WANG Lixin, et al. Preparation of polypyrrole/carbon black conducting composites by adsorption polymerization[J]. Acta Materiae Compositae Sinica,2005,22(3):45-48(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.03.009
    [29] 杨丽佳. 聚吡咯基电极材料的制备及电化学性能研究[D]. 镇江: 江苏科技大学, 2019.

    YANG Lijia. Preparation and electrochemical properties of polypyrrole-based electrode materials[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019(in Chinese).
    [30] BORSTEL D V, HOOGESTRAAT G, ZIECHMANN W. Efficiency of lignosulfonates and humic-related substances as expanders in negative electrodes of the lead/acid system[J]. Journal of Power Sources,1994,50(1-2):131-140. doi: 10.1016/0378-7753(93)01892-L
  • 加载中
图(14)
计量
  • 文章访问数:  919
  • HTML全文浏览量:  499
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-26
  • 录用日期:  2021-12-04
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回