留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C/SiC复合材料连接结构拉脱失效机制

李志强 吴振强 杨凌霄 李尧 刘宝瑞

李志强, 吴振强, 杨凌霄, 等. C/SiC复合材料连接结构拉脱失效机制[J]. 复合材料学报, 2023, 41(0): 1-7
引用本文: 李志强, 吴振强, 杨凌霄, 等. C/SiC复合材料连接结构拉脱失效机制[J]. 复合材料学报, 2023, 41(0): 1-7
Zhiqiang LI, Zhenqiang WU, Lingxiao YANG, Yao LI, Baorui1 LIU. Pull-out failure mechanism of C/SiC composite connection structure[J]. Acta Materiae Compositae Sinica.
Citation: Zhiqiang LI, Zhenqiang WU, Lingxiao YANG, Yao LI, Baorui1 LIU. Pull-out failure mechanism of C/SiC composite connection structure[J]. Acta Materiae Compositae Sinica.

C/SiC复合材料连接结构拉脱失效机制

基金项目: 国家自然科学基金 (U20B2002;52202082;12002056)
详细信息
    通讯作者:

    吴振强,博士,研究员,研究方向为结构强度与失效分析 E-mail: wuzhenqiang@126.com

  • 中图分类号: TB332

Pull-out failure mechanism of C/SiC composite connection structure

Funds: The National Natural Science Foundation of China (U20B2002; 52202082; 12002056)
  • 摘要: C/SiC陶瓷基复合材料由于具备高强度、高模量、耐高温等特点,广泛应用于飞行器的热防护结构以及热端部件上。由于常规的金属紧固件无法承受热防护结构以及热端部件经历严酷的高温环境,因此C/SiC复合材料连接结构大量的使用在热端部件的紧固和连接中。本文针对C/SiC复合材料连接结构设计了H型连接结构试件,开展沿螺钉轴向的单轴拉伸试验,采用宏观测试与细观测试相结合的方式研究了陶瓷基C/SiC连接结构的拉脱失效机制。研究结果表明C/SiC连接结构的受到制备工艺、材料初始缺陷以及初始连接状态的影响,导致连接结构初始加载阶段的刚度有所差异、最大拉伸载荷存在着离散性,并且加载过程中存在着非线性现象。CT测试结果表明连接结构螺纹孔变形挤压导致材料分层,螺纹丧失承载能力是引发结构拉脱失效的主要原因。C/SiC连接结构力学行为规律(a)和细观损伤检测结果分析(b)

     

  • 图  1  H型连接结构试件示意图

    Figure  1.  Diagram of H-shape connection structure

    图  2  试件安装状态

    Figure  2.  Test piece installation status

    图  3  C/SiC连接结构试件的载荷-位移曲线

    Figure  3.  Load-displacement curve of C/SiC connection structure test piece

    图  4  C/SiC连接结构试件T1的载荷-位移曲线及连接界面变化

    Figure  4.  Load-displacement curve and change of connection interface of C/SiC connection structure test piece T1

    图  5  C/SiC连接结构试件试验后状态

    Figure  5.  State of the C/SiC connection structure specimen after test

    图  6  试验前C/SiC连接结构CT检测结果

    Figure  6.  CT results of C/SiC connection structure before test

    图  7  试验后C/SiC连接结构CT检测结果

    Figure  7.  CT results of C/SiC connection structure after test

    图  8  应变花安装位置

    Figure  8.  Installation position of strain gage

    图  9  C/SiC连接结构连接部位应变变化规律

    Figure  9.  Strain change rule of connection part of C/SiC connection structure

  • [1] 张立同. 纤维增韧碳化硅陶瓷复合材料——模拟、表征与设计[M]. 北京: 化学工业出版社, 2009.

    ZHANG Li-tong. Toughening Silicon Carbide Ceramic Fiber Composite Materials—Simulation, Characterization and Design[M]. Beijing: Chemical Industry Press, 2009(in Chinese).
    [2] 张毅. CVI-2 D C/SiC复合材料铆接单元的力学行为与失效机制[D]. 西安: 西北工业大学, 2017.

    ZHANG Yi. Numerical Stimulation and Experimental Validation of Stress in C/SiC Riveted Joints under Shear Load[D]. Xian: Northwestern Polytechnical University, 2017(in Chinese).
    [3] LI Guangde, LI Yong, YU Guoqiang, et al. Effects of fiber preform structures on the mechanical properties of C/SiC nuts and bolts[J]. Ceramics International, 2016: 12901-12906.
    [4] LI Xuqin, TAN Zhiyong, ZHANG Yi, et al. Shear behaviors and failure mechanisms of 2 D C/SiC pins prepared by chemical vapor infiltration[J]. Ceramics International,2020,46(10):16693-16699. doi: 10.1016/j.ceramint.2020.03.243
    [5] FU Maoqing, FANG Guodong, LIU Shuo, et al. Failure analysis of 2 D C/SiC composite z-pinned/bonded hybrid single-lap joints[J]. Ceramics International,2020,46(13):21216-21224. doi: 10.1016/j.ceramint.2020.05.204
    [6] 张青, 刘永胜, 门静, 等. 受剪载荷下C/SiC铆接接头应力数值模拟与实验验证[J]. 稀有金属材料与工程, 2014, 43(2):327-330.

    ZHANG Qing, LIU Yongsheng, MEN Jing, et al. Numerical Stimulation and Experimental Validation of Stress in C/SiC Riveted Joints under Shear Load[J]. Rare Metal Materials and Engineering,2014,43(2):327-330(in Chinese).
    [7] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料紧固件拉-拉疲劳行为研究[J]. 宇航材料工艺, 2020, 50(3):81-86. doi: 10.12044/j.issn.1007-2330.2020.03.014

    YUAN Jianyu, PANG Jincheng, WANG Ying, et al. Tension-tension Fatigue Behavior of C/SiC Composite Fasteners[J]. Aerospace Materials & Technology,2020,50(3):81-86(in Chinese). doi: 10.12044/j.issn.1007-2330.2020.03.014
    [8] 袁建宇, 逄锦程, 王影, 等. C/SiC复合材料螺钉拉伸强度分布模型[J]. 宇航材料工艺, 2019, 49(5):74-78. doi: 10.12044/j.issn.1007-2330.2019.05.015

    YUAN Jianyu, PANG Jincheng, WANG Ying, et al. Tensile Strength Distribution Model of C/SiC Composite Material Bolts[J]. Aerospace Materials & Technology,2019,49(5):74-78(in Chinese). doi: 10.12044/j.issn.1007-2330.2019.05.015
    [9] 刘永胜, 胡成浩, 汪清, 等. 受拉载荷下C/SiC铆接接头应力的数值模拟与实验验证[J]. 复合材料学报, 2013, 30(3):205-210.

    LIU Yongsheng, HU Chenghao, WANG Qing, et al. Numerical stimulation and experimental validation of stress in C/SiC riveting joints under tensile load[J]. Acta Materiae Compositae Sinica,2013,30(3):205-210(in Chinese).
    [10] 卢子兴, 廖强, 杨振宇, 等. C/SiC复合材料螺栓螺牙承载能力[J]. 复合材料学报, 2015, 32(1):182-187.

    LU Zixing, LIAO Qiang, YANG Zhenyu, et al. Load bearing capability of thread teeth of C/SiC composite bolts[J]. Acta Materiae Compositae Sinica,2015,32(1):182-187(in Chinese).
    [11] LI Guangde, ZHANG Changrui, HU Haifeng, et al. Preparation and mechanical properties of C/SiC nuts and bolts[J]. Materials Science & Engineering A,2012,547(Jun.15):1-5.
    [12] 朱宝城, 高希光, 宋迎东. 陶瓷基复合材料螺栓渐进损伤计算与强度预测[J]. 推进技术, 2020, 41(2):406-411.

    ZHU Baocheng, GAO Xiguang, SONG Yingdong. Progressive Damage Calculation and Strength Prediction of Ceramic Matrix Composites Bolt[J]. Journal of Propulsion Technology,2020,41(2):406-411(in Chinese).
    [13] 李正禹. 螺钉参数对C/SiC复合材料连接结构高温拉伸性能的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LI Zhengyu. Effects of fastener parameters on tensile properties of C/SiC composite joint structures at high temperatures[D]. Haerbin: Harbin Institute of Technology, 2019(in Chinese).
    [14] 高魁垠, 李海波, 吴建国, 等. 2 D-C/SiC复合材料螺栓连接结构可靠性分析[J]. 强度与环境, 2020, 47(1):33-40.

    GAO Kuiyin, LI Haibo, WU Jianguo. Reliability Analysis of 2 D-C/SiC Composite Bolted Joints[J]. Structure & Environment Engineering,2020,47(1):33-40(in Chinese).
    [15] 刘宝瑞, 侯传涛, 赵丽滨, 等. 陶瓷基复合材料连接结构失效分析方法[J]. 装备环境工程, 2020, 17(1):63-70.

    LIU Baorui, HOU Chuantao, ZHAO Libin, et al. Failure Analysis Method of Ceramic Matrix Composite Joint Structures[J]. Equipment Environmental Engineering,2020,17(1):63-70(in Chinese).
    [16] ZHAO Libin, YANG Wen, CAO Tiancheng, et al. A progressive failure analysis of all-C/SiC composite multi-bolt joints[J]. Composite Structures,2018,202:1059-1068. doi: 10.1016/j.compstruct.2018.05.029
    [17] HE Zongbei, ZHANG Litong, ZHANG Yi, et al. Microstructural characterization and failure analysis of 2 D C/SiC two-layer beam with pin-bonded hybrid joints[J]. International Journal of Adhesion & Adhesives,2015,57:70-78.
    [18] LI Guangde, ZHANG Changrui, HU Haifeng, et al. Preparation and mechanical properties of C/SiC joints with pins or bolts[C]//Materials Science and Nanotechnology I. 2012.
    [19] 李旭勤, 陈旭, 陈婧旖, 等. 平纹编织C/SiC单钉铆接单元的制备与拉伸行为[J]. 硅酸盐学报, 2021, 49(6):1206-1212.

    LI Xuqin, CHEN Xu, CHEN Jingyi, et al. Fabrication and Tensile Behaviors of Plain Woren C/SiC Z-pinned Joint[J]. Journal of The Chinese Ceramic Society,2021,49(6):1206-1212(in Chinese).
    [20] 刘杰, 李海滨, 刘小瀛. 3 D针刺C/SiC复合材料螺栓的低成本制备及力学性能[J]. 航空学报, 2013, 34(7):1724-1730.

    LIU Jie, LI Haibin, LIU Xiaoying. Low Cost Preparation and Mechanical Property of Three-dimensional Needled C/SiC Bolts[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7):1724-1730(in Chinese).
    [21] Delhaes P. Chemical vapor deposition and infiltration processes of carbon materials[J]. Carbon,2002,40(5):641-657. doi: 10.1016/S0008-6223(01)00195-6
    [22] ZHANG Weigang, Hu Z J, KJ Hüttinger. Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstructure[J]. Carbon,2002,40(14):2529-2545. doi: 10.1016/S0008-6223(02)00206-3
    [23] 付茂青. C/SiC复合材料薄壁连接结构等效建模与强度分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    FU Maoqing. Equivalent modeling and strength analysis of C/SiC composite thin-walled joint structrure[D]. Haerbin: Harbin Institute of Technology, 2020(in Chinese).
    [24] HE Zongbei, ZHANG Litong, CHEN B, et al. Microstructure and mechanical properties of SiC bonded joints prepared by CVI[J]. International Journal of Adhesion and Adhesives,2016,64:15-22. doi: 10.1016/j.ijadhadh.2015.09.009
    [25] 马雪寒, 王守财, 陈旭, 等. 陶瓷基复合材料紧固件制造技术及其连接性能研究进展[J/OL]. 复合材料学报. https://doi.org/10.13801/j.cnki.fhclxb.20230227.004

    MA Xuehan, WANG Shoucai, CHEN Xu, et al. Review of preparation processes and joining performance of ceramic matrix composite fasteners[J/OL]. Acta Materiae Compositae Sinica. https://doi.org/10.13801/j.cnki.fhclxb.20230227.004
    [26] 卢越, 张海鹏. 陶瓷基复合材料螺栓渐进损伤计算与强度预测[J]. 设备管理与维修, 2020(2):30-31. doi: 10.16621/j.cnki.issn1001-0599.2020.01D.15

    LU Yue, ZHANG Haipeng. Progressive damage calculation and strength prediction of ceramic matrix composite bolts[J]. Plant Maintenance Engineering,2020(2):30-31(in Chinese). doi: 10.16621/j.cnki.issn1001-0599.2020.01D.15
    [27] 谭志勇, 王捷冰, 孟繁夫, 等. 配合条件对C/SiC在线铆接单元的力学性能影响[J]. 复合材料学报, 2022, 39(4):1-11.

    TAN Zhiyong, WANG Jiebing, MENG Fanfu, et al. Effect of fit conditions on mechanical properties of C/SiC online riveting unit[J]. Acta Materiae Compositae Sinica,2022,39(4):1-11(in Chinese).
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-05
  • 录用日期:  2023-03-31
  • 网络出版日期:  2023-04-12

目录

    /

    返回文章
    返回