留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管对丁腈橡胶O型密封圈力学及其热稳定性能的影响

许泽华 张彦斌 何强

许泽华, 张彦斌, 何强. 碳纳米管对丁腈橡胶O型密封圈力学及其热稳定性能的影响[J]. 复合材料学报, 2023, 40(9): 5181-5188. doi: 10.13801/j.cnki.fhclxb.20230112.005
引用本文: 许泽华, 张彦斌, 何强. 碳纳米管对丁腈橡胶O型密封圈力学及其热稳定性能的影响[J]. 复合材料学报, 2023, 40(9): 5181-5188. doi: 10.13801/j.cnki.fhclxb.20230112.005
XU Zehua, ZHANG Yanbin, HE Qiang. Effect of carbon nanotubes on mechanical and thermal stability of nitrile rubber O-ring[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5181-5188. doi: 10.13801/j.cnki.fhclxb.20230112.005
Citation: XU Zehua, ZHANG Yanbin, HE Qiang. Effect of carbon nanotubes on mechanical and thermal stability of nitrile rubber O-ring[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5181-5188. doi: 10.13801/j.cnki.fhclxb.20230112.005

碳纳米管对丁腈橡胶O型密封圈力学及其热稳定性能的影响

doi: 10.13801/j.cnki.fhclxb.20230112.005
基金项目: 四川省科技计划项目(23 NSFSC1923)
详细信息
    通讯作者:

    何强,博士,教授,博士生导师,研究方向为特种橡胶密封件制备、测试与机制研究 E-mail:aystar@163.com

  • 中图分类号: TB333.7;TQ333.7

Effect of carbon nanotubes on mechanical and thermal stability of nitrile rubber O-ring

Funds: Sichuan Science and Technology Plan Project (23 NSFSC1923)
  • 摘要: 为了研究碳纳米管(CNT)对丁腈橡胶(NBR) O型密封圈的力学及热稳定性能补强机制,利用机械共混法和热压成型法制备了1%CNT/NBR (CNT质量比)和2%CNT/NBR复合材料的O型密封圈,在表征CNT/NBR复合材料的截面SEM、EDS和FTIR基础上,测试了CNT/NBR复合材料O型密封圈的力学性能、热稳定性能和老化性能。研究结果表明,随着CNT含量的增加,CNT/NBR复合材质O型密封圈的弹性模量增大,刚性增强。1%CNT/NBR材质O型密封圈由于C—O键的形成,使其拉伸强度达到12.6 MPa。CNT在NBR基体中含量的增加可以提高CNT/NBR复合材质O型密封圈的热稳定性,2%CNT/NBR的相转变温度达到297℃。1%CNT/NBR复合材料具有优异的抗老化特性归因于CNT使NBR基体产生C≡N三键官能团。高性能CNT/NBR复合材料O型密封圈在航空密封件领域有一定的应用价值。

     

  • 图  1  碳纳米管(CNT)/丁腈橡胶(NBR)复合材料O型密封圈

    Figure  1.  Carbon nanotubes (CNT)/nitrile rubber (NBR) composite O-ring

    D—Nominal outer diameter of the seal; d—Nominal inner diameter of the seal; d0—Cross-sectional diameter

    图  2  CNT及不同CNT质量比的CNT/NBR复合材料截面的SEM图像:(a) CNT;(b) NBR;(c) 1%CNT/NBR;(d) 2%CNT/NBR

    Figure  2.  SEM images of the cross-section of CNT/NBR composites with different CNT mass ratios: (a) CNT; (b) NBR; (c) 1%CNT/NBR;(d) 2%CNT/NBR

    图  3  CNT/NBR复合材料截面元素能谱

    Figure  3.  Element energy spectra of CNT/NBR composite cross-section

    图  4  CNT的FTIR图谱

    Figure  4.  FTIR spectrum of CNT

    图  5  NBR及CNT/NBR复合材料的FTIR图谱

    Figure  5.  FTIR spectra of NBR and CNT/NBR composites

    图  6  NBR及CNT/NBR复合材料的DSC曲线

    Figure  6.  DSC curves of NBR and CNT/NBR composites

    图  7  不同CNT含量O型密封圈的拉伸力-位移曲线

    Figure  7.  Tensile force-displacement curves of O-ring with different CNT content

    T—Tensile strength; E—Elongation at break

    图  8  不同CNT含量O型密封圈老化后的拉伸力-位移曲线

    Figure  8.  Tensile force-displacement curves of O-ring with different CNT content after aging

    图  9  不同CNT含量O型密封圈老化后的FTIR图谱

    Figure  9.  FTIR spectra of O-ring with different CNT content after aging

    表  1  GB 1235—76[24]丁腈橡胶O型圈尺寸

    Table  1.   GB 1235—76[24] nitrile rubber O-ring size

    D/d/mmd0/mmd1/mm
    65/60$ {3.12}_{-0.10}^{+0.12} $59.5±0.40
    Note: d1—Actual inner diameter.
    下载: 导出CSV

    表  2  不同CNT含量NBR复合材料O型密封圈的尺寸、硬度、拉伸强度及断裂伸长率

    Table  2.   Dimensions, hardness, tensile strength and elongation at break of NBR composite O-ring with different CNT content

    d0/mmC0/mmS0/mmShore A/HAT/MPaE/%
    NBR3.12186.369.476±112.1±0.7210.8±31.5
    1%CNT/NBR3.12186.869.478±112.6±1.1187.2±21.4
    2%CNT/NBR3.14187.469.480±1 9.8±1.8131.0±15.6
    Notes: C0—Inner circumference of O-ring; S0—Center distance of initial fixture; Shore A—Hardness.
    下载: 导出CSV

    表  3  不同CNT含量NBR复合材料O型密封圈老化后的尺寸、硬度、拉伸强度及断裂伸长率

    Table  3.   Dimensions, hardness, tensile strength and elongation at break of NBR composite O-ring with different CNT content after aging

    d0/mmC0/mmS0/mmShore A/HAT/MPaE/%
    NBR3.10184.669.482±113.2±0.5218.0±15.2
    1%CNT/NBR3.08186.269.483±217.3±0.4199.8±7.4
    2%CNT/NBR3.06185.969.484±110.2±0.9114.6±13.1
    下载: 导出CSV

    表  4  不同CNT含量NBR复合材料O型密封圈的恒定压缩永久变形结果

    Table  4.   Permanent deformation results of NBR composite O-ring with different CNT content under constant compression

    d1/
    mm
    d2/
    mm
    C1/
    %
    $\overline C _{\textit{1} }$/%
    NBR3.143.10 76.3
    3.163.07 6
    3.183.10 6
    1%CNT/
    NBR
    3.173.10 88.7
    3.163.0810
    3.153.08 8
    2%CNT/
    NBR
    3.213.11118.0
    3.153.10 5
    3.173.10 8
    Notes: d1—Cross-sectional diameter of the O-ring before compression; d2—Cross-sectional diameter of the O-ring after compression recovery for 24 h; C1—Constant compression set; $\overline C _{{1} } $—Average constant compression set.
    下载: 导出CSV
  • [1] 唐黎明, 李云龙, 何恩球, 等. 分子模拟纳米ZnO/丁腈橡胶复合材料的摩擦学行为[J]. 复合材料学报, 2020, 37(3):690-695.

    TANG Liming, LI Yunlong, HE Enqiu, et al. Molecular simulation of tribologybehavior of nano ZnO/nitrile-butadienerubbercomposites[J]. Acta Materiae Compositae Sinica,2020,37(3):690-695(in Chinese).
    [2] 张志, 许勇, 岳耀, 等. 受阻酚AO-60/丁腈橡胶-环氧化天然橡胶-天然橡胶复合材料的制备及其阻尼性能[J]. 复合材料学报, 2019, 36(8):1796-1803.

    ZHANG Zhi, XU Yong, YUE Yao, et al. Preparation and damping properties of hindered phenol AO-60/nitrilebutadiene rubber-epoxidized natural rubber-natural rubbercomposites[J]. Acta Materiae Compositae Sinica,2019,36(8):1796-1803(in Chinese).
    [3] LIAO B P, SUN B, LI Y, et al. Sealing reliability modeling of aviation seal based on interval uncertainty method and multidimensional response surface[J]. Chinese Journal of Aeronautics,2019,32(9):2188-2198. doi: 10.1016/j.cja.2019.01.019
    [4] ZHANG M T, FENG Y. Numerical model of mixed lubrication and experimental study of reciprocating seal based on inverse lubrication theory[J]. Lubricants,2022,10(7):153. doi: 10.3390/lubricants10070153
    [5] ZENG D Z, DONG B J, QI Y D, et al. On how CO2 partial pressure on corrosion of HNBR rubber O-ring in CO2-H2S-CH4 environment[J]. International Journal of Hydrogen Energy,2021,46(11):8300-8316. doi: 10.1016/j.ijhydene.2020.11.264
    [6] 王兴刚, 齐永新, 彭仁苹, 等. 我国丁腈橡胶产业发展现状及未来发展趋势[J]. 高分子通报, 2016(4):1-16.

    WANG Xinggang, QI Yongxin, PENG Renping, et al. The development status and future development trend of nitrile rubber industry in China[J]. Polymer Bulletin,2016(4):1-16(in Chinese).
    [7] 逄见光. 不同牌号氢化丁腈橡胶性能对比[J]. 特种橡胶制品, 2020, 41(2):31-35.

    YING Jianguang. Performance comparison of different grades of hydrogenated nitrile rubber[J]. Special Rubber Products,2020,41(2):31-35(in Chinese).
    [8] 钱伯章. Zeon公司扩大日本氢化丁腈橡胶产能[J]. 合成橡胶工业, 2022, 45(3):243.

    QIAN Bozhang. Zeon company expands the production capacity of hydrogenated nitrile rubber in Japan[J]. Synthetic Rubber Industry,2022,45(3):243(in Chinese).
    [9] HU G, MA J B, YUAN G J, et al. Effect of hard particles on the tribological properties of hydrogenated nitrile butadiene rubber under different lubricated conditions[J]. Tribology International,2022,169:107457. doi: 10.1016/j.triboint.2022.107457
    [10] LENG D X, HUANG C, XU K, et al. Experimental mechanics and numerical prediction on stress relaxation and unrecoverable damage characteristics of rubber materials[J]. Polymer Testing,2021,98:107183. doi: 10.1016/j.polymertesting.2021.107183
    [11] EL YAAGOUBI M, EL MAANAOUI H, MEIER J. Influence of operating temperature on the measured and predicted lifetime of carbon black-filled hydrogenated nitrile butadiene rubber[J]. Engineering Fracture Mechanics,2022,271:108633. doi: 10.1016/j.engfracmech.2022.108633
    [12] NISHI T, YAMAGUCHI T, HOKKIRIGAWA K. Development of high slip-resistant footwear outsole using rubber surface filled with activated carbon/sodium chloride[J]. Scientific Reports,2022,12:267. doi: 10.1038/s41598-021-99269-x
    [13] ZHANG P, KONG X S, WANG Z, et al. High velocity projectile impact of a composite rubber/aluminium fluid-filled container[J]. International Journal of Lightweight Materials and Manufacture,2021,4(1):1-8. doi: 10.1016/j.ijlmm.2020.06.007
    [14] LIU X S, ZHOU X C, KUANG F M, et al. Mechanical and tribological properties of nitrile rubber reinforced by nano-SiO2: Molecular dynamics simulation[J]. Tribology Letters,2021,69(2):1-11.
    [15] CUI J Z, ZHAO J, WANG S J, et al. A comparative study on enhancement of mechanical and tribological properties of nitrile rubber composites reinforced by different functionalized graphene sheets: Molecular dynamics simulations[J]. Polymer Composites,2021,42(1):205-219. doi: 10.1002/pc.25819
    [16] AMMINENI S P, NAGARAJU C, LINGARAJU D. Thermal degradation of naturally aged NBR with time and temperature[J]. Materials Research Express,2022,9(6):065305. doi: 10.1088/2053-1591/ac7302
    [17] MOHD NORIZAN N, ASYRAF M R M, KHALINA A, et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview[J]. Polymers,2021,13(7):1047. doi: 10.3390/polym13071047
    [18] VENKATARAMAN A, AMADI E V, CHEN Y D, et al. Carbon nanotube assembly and integration for applications[J]. Nanoscale Research Letters,2019,14(1):1-47. doi: 10.1186/s11671-018-2843-4
    [19] YANG Z F, TIAN J R, YIN Z F, et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon,2019,141:467-480. doi: 10.1016/j.carbon.2018.10.010
    [20] NORIZAN M N, MOKLIS M H, NGAH DEMON S Z, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors[J]. RSC Advances,2020,10(71):43704-43732. doi: 10.1039/D0RA09438B
    [21] KITISAVETJIT W, NAKARAMONTRI Y, PICHAIYUT S, et al. Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites[J]. Polymer Testing,2021,93:106981. doi: 10.1016/j.polymertesting.2020.106981
    [22] 唐黎明, 王新楠, 纪平, 等. 碳纳米管丁腈橡胶耐磨复合材料的摩擦与力学性能模拟[J]. 安徽大学学报(自然科学版), 2022, 46(5):83-88.

    TANG Liming, WANG Xinnan, JI Ping, et al. Simulation of frictionaland mechanical properties of CNTs/nitrile-butadienerubberwear-resistant composites[J]. Journal of Anhui University (Natural Science Edition),2022,46(5):83-88(in Chinese).
    [23] TZOUNIS L, PETOUSIS M, LIEBSCHER M, et al. Three-dimensional (3D) conductive network of CNT-modified short jute fiber-reinforced natural rubber: Hierarchical CNT-enabled thermoelectric and electrically conductive composite interfaces[J]. Materials,2020,13(11):2668. doi: 10.3390/ma13112668
    [24] 国家标准计量局. O型橡胶密封圈尺寸系列: GB 1235—76[S]. 北京: 中国标准出版社, 1976.

    National Bureau of Standards and Metrology. Size series of O-type rubber sealing ring: GB 1235—76 [S]. Beijing: Standards Press of China, 1976(in Chinese).
    [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. O形橡胶密封圈实验方法: GB/T 5720—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. Test method of O-shaped rubber sealing ring: GB/T 5720—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [26] 中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶热空气加速老化和耐热实验: GB/T 3512—2001[S]. 北京: 中国标准出版社, 2001.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Hot air accelerated aging and heat resistance test of vulcanized rubber or thermoplastic rubber: GB/T 3512—2001[S]. Beijing: Standards Press of China, 2001(in Chinese).
    [27] 赵家琳, 高杜娟, 范国宁. 羧基丁腈橡胶中羧基含量测定方法的研究[J]. 合成材料老化与应用, 2018, 47(6):51-53.

    ZHAO Jialin, GAO Dujuan, FAN Guoning. Study on the method for determination of the content of carboxyl in carboxylated nitrile rubber[J]. Aging and Application of Synthetic Materials,2018,47(6):51-53(in Chinese).
    [28] 朱强强, 郭涛. 基于傅里叶变换红外光谱的航空丁腈橡胶鉴别方法[J]. 理化检验-物理分册, 2021, 57(3):19-22.

    ZHU Qiangqiang, GUO Tao. Identification method of aviation nitrile rubber based on Fourier transform infrared spectroscopy[J]. Physical and Chemical Inspection-Physical Volume,2021,57(3):19-22(in Chinese).
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  191
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2022-12-19
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回