Effect of carbon nanotubes on mechanical and thermal stability of NBR O-ring
-
摘要:
碳纳米管因其具有高的长径比以及大的比表面积,呈现出优异的一维量子结构,在聚合物领域吸引了越来越多的研究,将其应用于丁腈橡胶中可以提升基体的力学及理化特性。但由于丁腈橡胶制品的加工过程中粒子的分散程度会对产品的力学性能产生影响,严重阻碍了它的实际应用。本文通过机械共混法和热压成型工艺将不同含量的碳纳米管(CNT)混合到丁腈橡胶(NBR)中制备出O型密封圈,CNT混合到NBR中会增加基体的交联密度使1%CNT/NBR复合材料O型圈的拉伸强度达到12.6 MPa。CNT/NBR材质O型圈具有优异的抗老化特性,1%CNT/NBR复合材料O型圈经过热空气老化后的拉伸强度达到17.3 MPa,这归因于CNT能够抑制NBR基体在热空气老化的过程中的氧化反应,同时还能使NBR材质的O型密封圈生成C≡N强化学键。另外,CNT的加入使NBR材质的O型圈热稳定性提高,相转变温度升高15 ℃。 CNT/NBR材质O型密封圈力学特性(a)和老化后力学特性(b) Abstract: In order to study the reinforcing mechanism of carbon nanotubes (CNTs) on the mechanical and thermal stability of nitrile rubber (NBR) O-ring, 1%CNT/NBR and 2%CNT/NBR composite O-ring were prepared by mechanical blending and hot pressing. The mechanical properties of CNT/NBR composite O-ring were tested on the basis of SEM, EDS and FT-IR. The results show that with the increase of CNT content, the elastic modulus and rigidity of CNT/NBR composite O-ring increase. The tensile strength of 1%CNT/NBR O-ring reaches 12.6 MPa due to the formation of C—O bond. The increase of CNT content in NBR matrix can improve the thermal stability of CNT/NBR composite O-ring, and the phase transition temperature of 2%CNT/NBR reaches 297℃. The excellent aging resistance of 1%CNT/NBR composites is attributed to the fact that CNT makes NBR matrix produce CN triple bond functional groups. High-performance CNT/NBR composite O-ring has certain application value in the field of aviation seals. -
图 2 CNT及不同CNT添加量时CNT/NBR复合材料截面的微观形貌SEM图像。(a)为CNT微观形貌;(b)为NBR截面微观形貌;(c)为1%CNT/NBR截面微观形貌;(d)为2%CNT/NBR截面微观形貌。
Figure 2. SEM images of the cross-section of CNT/NBR composites with different CNT contents. (a) the microscopic morphology of CNT; (b) The cross-section micro-morphology of NBR; (c) the cross-section micro-morphology of 1%CNT/NBR; And (d) the cross-section micro-morphology of 2%CNT/NBR.
表 1 GB1235-76丁腈橡胶O型圈尺寸
Table 1. GB1235-76 nitrile rubber O-ring size
D/ d(mm) d0(mm) d1(mm) 65/60 $ {3.12}_{-0.10}^{+0.12} $ 59.5±0.40 Notes: D is the nominal outer diameter of the seal, d is the nominal inner diameter of the seal, d0 is the cross-sectional diameter, and d1 is the actual inner diameter. 表 2 不同CNT含量NBR复合材料O型密封圈的尺寸、硬度、拉伸强度及断裂伸长率。
Table 2. Dimensions, hardness, tensile strength and elongation at break of NBR composite O-ring with different CNT content.
d0/mm C0/mm S0/mm Shore A/HA T/MPa E/% NBR 3.12 186.3 69.4 76±1 12.1±0.7 210.8±31.5 1%CNT/NBR 3.12 186.8 69.4 78±1 12.6±1.1 187.2±21.4 2%CNT/NBR 3.14 187.4 69.4 80±1 9.8±1.8 131.0±15.6 Notes: d0 is the cross-sectional diameter, C0 is the inner circumference of O-ring, S0 is the center distance of initial fixture, Shore A is the hardness, T is the tensile strength, and E is the elongation at break. 表 3 不同CNT含量NBR复合材料O型密封圈老化后的尺寸、硬度、拉伸强度及断裂伸长率。
Table 3. Dimensions, hardness, tensile strength and elongation at break of NBR composite O-ring with different CNT content after aging.
d0/mm C0/mm S0/mm Shore A/HA T/MPa E/% NBR 3.10 184.6 69.4 82±1 13.2±0.5 218.0±15.2 1%CNT/NBR 3.08 186.2 69.4 83±2 17.3±0.4 199.8±7.4 2%CNT/NBR 3.06 185.9 69.4 84±1 10.2±0.9 114.6±13.1 Notes: d0 is the cross-sectional diameter, C0 is the inner circumference of O-ring, S0 is the center distance of initial fixture, Shore A is the hardness, T is the tensile strength, and E is the elongation at break. 表 4 不同CNT含量NBR复合材料O型密封圈的恒定压缩永久变形结果。
Table 4. Permanent deformation results of NBR composite O-ring with different CNT content under constant compression.
d1/
mmd2/
mmC1/
%$\overline C _{\textit{1} }$/% NBR 1 3.14 3.10 7 6.3 2 3.16 3.07 6 3 3.18 3.10 6 1%CNT/
NBR4 3.17 3.10 8 8.7 5 3.16 3.08 10 6 3.15 3.08 8 2%CNT/NBR 7 3.21 3.11 11 8.0 8 3.15 3.10 5 9 3.17 3.10 8 Notes: d1 is the cross-sectional diameter of the O-ring before compression, d2 is the cross-sectional diameter of the O-ring after compression recovery for 24 h, C1 is the constant compression set, and $\overline C _{\textit{1} } $ is the average constant compression set. -
[1] 唐黎明, 李云龙, 何恩球, 等. 分子模拟纳米ZnO/丁腈橡胶复合材料的摩擦学行为[J]. 复合材料学报, 2020, 37(3):690-695.TANG Liming, LI Yunlong, HE Enqiu, et al. Tribological behavior of nano-ZnO/ NBR composites by molecular simulation[J]. Journal of Composite Materials,2020,37(3):690-695(in Chinese). [2] 张志, 许勇, 岳耀, 等. 受阻酚AO-60/丁腈橡胶-环氧化天然橡胶-天然橡胶复合材料的制备及其阻尼性能[J]. 复合材料学报, 2019, 36(8):1796-1803.ZHANG Zhi, XU Yong, YUE Yao, et al. Preparation and damping properties of hindered phenol AO-60/ NBR-ENR-NR composites[J]. Journal of Composite Materials,2019,36(8):1796-1803(in Chinese). [3] LIAO Baopeng, SUN Bo, LI Yu, et al. Sealing reliability modeling of aviation seal based on interval uncertainty method and multidimensional response surface[J]. Chinese Journal of Aeronautics,2019,32(9):2188-2198. doi: 10.1016/j.cja.2019.01.019 [4] ZHANG Miaotian, FENG Yu. Numerical model of mixed lubrication and experimental study of reciproc ating seal based on inverse lubrication theory[J]. Lubricants,2022,10(7):153. doi: 10.3390/lubricants10070153 [5] ZENG Dezhi, DoNG Baojun, QI Yadong, et al. On how CO2 partial pressure on corrosion of HNBR rubber O-ring in CO2–H2 S–CH4 environment[J]. International Journal of Hydrogen Energy,2021,46(11):8300-8316. doi: 10.1016/j.ijhydene.2020.11.264 [6] 王兴刚, 齐永新, 彭仁苹, 等. 我国丁腈橡胶产业发展现状及未来发展趋势[J]. 高分子通报, 2016(4):1-16.WANG Xinggang, QI Yongxin, PENG Renping, et al. Present situation and future development trend of NBR industry in China[J]. Polymer Bulletin,2016(4):1-16(in Chinese). [7] 逄见光. 不同牌号氢化丁腈橡胶性能对比[J]. 特种橡胶制品, 2020, 41(2):31-35.YING Jianguang. Performance comparison of different grades of hydrogenated nitrile rubber[J]. Special rubber products,2020,41(2):31-35(in Chinese). [8] 钱伯章. Zeon公司扩大日本氢化丁腈橡胶产能[J]. 合成橡胶工业, 2022, 45(3):243.QIAN Bozhang. Zeon Company expands the production capacity of hydrogenated nitrile rubber in Japan[J]. Synthetic Rubber Industry,2022,45(3):243(in Chinese). [9] HU Gang, MA Jianbo, YUAN Guangjie, et al. Effect of hard particles on the tribological properties of hydrogenated nitrile butadiene rubber under different lubricated conditions[J]. Tribology International,2022,169:107457. doi: 10.1016/j.triboint.2022.107457 [10] LENG D X, HUANG C, XU K, et al. Experimental mechanics and numerical prediction on stress relaxation and unrecoverable damage characteristics of rubber materials[J]. Polymer Testing,2021,98:107183. doi: 10.1016/j.polymertesting.2021.107183 [11] MOHAMMED EL Yaagoubi, MAANAOUI EL Maanaoui, JENS Meier. Influence of operating temperature on the measured and predicted lifetime of carbon black-filled hydrogenated nitrile butadiene rubber[J]. Engineering Fracture Mechanics,2022,271:108633. doi: 10.1016/j.engfracmech.2022.108633 [12] TOSHIAKI Nishi, TOSHIAKI Yamaguchi, KAZUO Hokkirigawa. Development of high slip-resistant footwear outsole using rubber surface filled with activated carbon/sodium chloride[J]. Scientific reports,2022,12(1):1-12. doi: 10.1038/s41598-021-99269-x [13] ZHANG Pu, KONG Xiangshao, WANG Zhuo, et al. High velocity projectile impact of a composite rubber/aluminium fluid-filled container[J]. International Journal of Lightweight Materials and Manufacture,2021,4(1):1-8. doi: 10.1016/j.ijlmm.2020.06.007 [14] LIU Xueshen, ZHOU Xincong, KUANG Fuming, et al. Mechanical and tribological properties of nitrile rubber reinforced by nano-SiO2: Molecular dynamics simulation[J]. Tribology Letters,2021,69(2):1-11. [15] CUI Jianzheng, ZHAO Jing, WANG Shijie, et al. A comparative study on enhancement of mechanical and tribological properties of nitrile rubber composites reinforced by different functionalized graphene sheets: molecular dynamics simulations[J]. Polymer Composites,2021,42(1):205-219. doi: 10.1002/pc.25819 [16] AMMINENI Syam Prasad, NAGARAJU Ch, LINGARAJU D. Thermal degradation of naturally aged NBR with time and temperature[J]. Materials Research Express,2022,9(6):065305. doi: 10.1088/2053-1591/ac7302 [17] NORIZAN Mohd Nurazzi, ASYRAF M R M, KHALINA A, et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview[J]. Polymers,2021,13(7):1047. doi: 10.3390/polym13071047 [18] VENKATARAMAN Anusha, AMADI Eberechukwu Victoria, CHEN Yingdong, et al. Carbon nanotube assembly and integration for applications[J]. Nanoscale research letters,2019,14(1):1-47. doi: 10.1186/s11671-018-2843-4 [19] YANG Zhoufei, TIAN Jiarui, YIN Zefang, et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon,2019,141:467-480. doi: 10.1016/j.carbon.2018.10.010 [20] NORIZAN Mohd Nurazzi, MOKLIS Muhammad Harussani, DEMON Siti Zulaikha Ngah, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors[J]. RSC advances,2020,10(71):43704-43732. doi: 10.1039/D0RA09438B [21] KITISAVETJIT Wasuthon, NAKARAMONTRI Yeampon, PICHAIYUT Skulrat, et al. Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites[J]. Polymer Testing,2021,93:106981. doi: 10.1016/j.polymertesting.2020.106981 [22] 唐黎明, 王新楠, 纪平, 等. 碳纳米管丁腈橡胶耐磨复合材料的摩擦与力学性能模拟[J]. 安徽大学学报(自然科学版), 2022, 46(5):83-88.TANG Liming, WANG Xinnan, JI Ping, et al. Simulation of friction and mechanical properties of carbon nanotube NBR wear-resistant composites[J]. Journal of Anhui University (Natural Science Edition),2022,46(5):83-88(in Chinese). [23] TZOUNIS Lazaros, PETOUSIS Markos, LIEBSCHER Marco, et al. Three-Dimensional (3 D) Conductive Network of CNT-Modified short jute fiber-reinforced natural rubber: hierarchical CNT-enabled thermoelectric and electrically conductive composite interfaces[J]. Materials,2020,13(11):2668. doi: 10.3390/ma13112668 [24] 国家标准计量局. O型橡胶密封圈尺寸系列: GB1235-76[S]. 北京: 中国标准出版社, 1976.National Bureau of Standards and Metrology. Size series of O-type rubber sealing ring: GB 1235-76 [S]. Beijing: China Standards Publishing House, 1976 (in Chinese). [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. O形橡胶密封圈实验方法: GB/T 5720-2008[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. Test method of O-shaped rubber sealing ring: GB/T 5720-2008[S]. Beijing: China Standards Publishing House, 2008 (in Chinese). [26] 中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶热空气加速老化和耐热实验: GB/T 3512-2001[S]. 北京: 中国标准出版社, 2001.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Hot air accelerated aging and heat resistance test of vulcanized rubber or thermoplastic rubber: GB/T 3512-2001[S]. Beijing: China Standards Publishing House, 2001 (in Chinese). [27] 赵家琳, 高杜娟, 范国宁. 羧基丁腈橡胶中羧基含量测定方法的研究[J]. 合成材料老化与应用, 2018, 47(6):51-53.ZHAO Jialin, GAO Dujuan, FAN Guoning. Study on determination method of carboxyl content in carboxyl nitrile rubber[J]. Aging and application of synthetic materials,2018,47(6):51-53(in Chinese). [28] 朱强强, 郭涛. 基于傅里叶变换红外光谱的航空丁腈橡胶鉴别方法[J]. 理化检验(物理分册), 2021, 57(3):19-22.ZHU Qiangqiang, GUO Tao. Identification method of aviation nitrile rubber based on Fourier transform infrared spectroscopy[J]. Physical and Chemical Inspection (Physical Volume),2021,57(3):19-22(in Chinese). -

计量
- 文章访问数: 104
- HTML全文浏览量: 55
- 被引次数: 0