留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学的ODOPB环氧树脂体系微观破坏行为摸拟

牛慕绮 严佳 徐浩 武湛君

牛慕绮, 严佳, 徐浩, 等. 基于分子动力学的ODOPB环氧树脂体系微观破坏行为摸拟[J]. 复合材料学报, 2022, 39(8): 3695-3702. doi: 10.13801/j.cnki.fhclxb.20211110.001
引用本文: 牛慕绮, 严佳, 徐浩, 等. 基于分子动力学的ODOPB环氧树脂体系微观破坏行为摸拟[J]. 复合材料学报, 2022, 39(8): 3695-3702. doi: 10.13801/j.cnki.fhclxb.20211110.001
NIU Muqi, YAN Jia, XU Hao, et al. Simulation of microscopic fracture behavior of ODOPB epoxy resin based on molecular dynamics[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3695-3702. doi: 10.13801/j.cnki.fhclxb.20211110.001
Citation: NIU Muqi, YAN Jia, XU Hao, et al. Simulation of microscopic fracture behavior of ODOPB epoxy resin based on molecular dynamics[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3695-3702. doi: 10.13801/j.cnki.fhclxb.20211110.001

基于分子动力学的ODOPB环氧树脂体系微观破坏行为摸拟

doi: 10.13801/j.cnki.fhclxb.20211110.001
基金项目: 国家重点研发计划(2018YFA0702800)
详细信息
    通讯作者:

    严佳,博士,副教授,研究方向为材料物理与化学  E-mail: jyan@dlut.edu.cn

  • 中图分类号: O631.2;O631.5

Simulation of microscopic fracture behavior of ODOPB epoxy resin based on molecular dynamics

  • 摘要: 将磷元素引入到环氧树脂体系可以有效改善其液氧相容性,但同时对其常低温力学性能的影响还有待研究。由于固化后的含磷环氧树脂体系具有复杂的无定形非晶交联网状结构,影响其力学性能的因素众多且相互关联,实验研究难以表征其微观破坏行为。本论文基于分子动力学(MD)研究,模拟出10-(2, 5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)与环氧氯丙烷反应得到的环氧树脂与固化剂4, 4'-二氨基二苯甲烷(DDM)的固化交联过程,计算了该树脂体系的热力学参数与微观破坏行为,揭示其断裂过程下的微观力学响应机制,并与2wt%含磷量下的ODOPB改性环氧树脂体系进行对比。分析结果为耐极端环境高性能环氧树脂与复合材料的设计与性能优化提供参考。

     

  • 图  1  10-(2, 5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(ODOPB)改性环氧树脂(a)与ODOPB环氧树脂 (b)的分子结构

    Figure  1.  Molecular structures of 10-(2, 5-dihydroxyphenyl)-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide (ODOPB) modified epoxy resin (a) and ODOPB epoxy resin (b)

    图  2  基于Materials studio的ODOPB环氧树脂体系与固化剂4, 4'-二氨基二苯甲烷(DDM)单体分子动力学模型

    Figure  2.  Molecular dynamics model of ODOPB epoxy resin system and curing agent 4, 4'-diaminodiphenylmethane (DDM) monomer based on Materials studio

    图  3  密度-温度曲线求ODOPB环氧树脂体系玻璃化转变温度Tg

    Figure  3.  Glass transition temperature Tg of ODOPB epoxy resin system according to density-temperature curve

    图  4  双酚A环氧树脂体系(BPA epoxy)、ODOPB改性环氧树脂体系(ODOPB modified)与ODOPB环氧树脂体系(ODOPB epoxy)的应力-应变曲线(a)和累计断键曲线(b)

    Figure  4.  Stress-strain curve (a) and cumulative broken bond number curves (b) of bisphenol A epoxy resin system (BPA epoxy), ODOPB modified epoxy resin system (ODOPB modified) and ODOPB epoxy resin system (ODOPB epoxy)

    Smax—Maximum stress; S—Plateau stress

    图  5  300 K和90 K下ODOPB环氧树脂应力-应变曲线(a)与累计断键曲线(b)

    Figure  5.  Comparison of stress-strain curves (a) and cumulative broken bond number curves (b) of ODOPB epoxy resin at 300 K and 90 K

    Sy—Yield stress

    图  6  不同应变下的未改性BPA树脂与ODOPB环氧树脂体系内部孔径分布

    Figure  6.  Internal pore size distribution of the BPA and ODOPB resin under different strains

    图  7  300 K和90 K下ODOPB环氧树脂体系内部孔径分布

    Figure  7.  Internal pore size distribution of the ODOPB epoxy resin system under different strains at 300 K and 90 K

  • [1] 湛利华, 关成龙, 黄诚, 等. 航天低温复合材料贮箱国内外研究现状分析[J]. 航空制造技术, 2019, 62(16):79-87.

    ZHAN Lihua, GUAN Chenglong, HUANG Cheng, et al. Analysis of domestic and foreign research status of cryogenic composite storage tanks for aerospace[J]. Aviation Manufacturing Technology,2019,62(16):79-87(in Chinese).
    [2] 于斌, 刘志栋, 靳庆臣, 等. 国内外空间复合材料压力容器研究进展及发展趋势分析(一)[J]. 压力容器, 2012, 29(3):30-42. doi: 10.3969/j.issn.1001-4837.2012.03.007

    YU Bin, LIU Zhidong, JIN Qingchen, et al. Research progress and development trend analysis of space composite pressure vessels at home and abroad (1)[J]. Pressure Vessel,2012,29(3):30-42(in Chinese). doi: 10.3969/j.issn.1001-4837.2012.03.007
    [3] 黄诚, 刘德博, 吴会强, 等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2):27-35.

    HUANG Cheng, LIU Debo, WU Huiqiang, et al. Application prospects of composite storage tanks for space vehicles in my country[J]. Journal of Shenyang University of Aeronautics and Astronautics,2016,33(2):27-35(in Chinese).
    [4] WANG G, LI X D, YAN R. The study on compatibility of polymer matrix resins with liquid oxygen[J]. Materials Science & Engineering: B,2006,132(10):70-73.
    [5] BECHEL V, KIM R, DOMALDSON S. Composites containing barrier layers for reduced permeability at cryogenic temperature[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island: AIAA, 2006: 2092.
    [6] 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10):2747-2755.

    ZHANG Chenwei, ZHANG Boming. Application and key technology of composite material storage tank in cryogenic propulsion system of spacecraft[J]. Acta Aeronautica Sinica,2014,35(10):2747-2755(in Chinese).
    [7] ROBINSON M. Composite cryogenic propellant tank development[C]//35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Hilton Head: AIAA, 1994: 1375.
    [8] 陈振国, 矫维成, 闫美玲, 等. 碳纤维增强树脂基复合材料低温贮箱抗渗漏性研究进展[J]. 玻璃钢/复合材料, 2018, 45(11):109-116.

    CHEN Zhen'guo, JIAO Weicheng, YAN Meiling, et al. Research progress on the leakage resistance of carbon fiber reinforced resin matrix composites in low temperature storage tanks[J]. Fiberglass/Composite Materials,2018,45(11):109-116(in Chinese).
    [9] ROBINSON M J. Composite cryogenic propellant tank development[J]. AIAA-94-1375-CP, 1994: 1375.
    [10] 李家亮. 环氧树脂液氧相容性与低温力学性能研究[D]. 大连: 大连理工大学, 2017.

    LI Jialiang. Study on liquid oxygen compatibility and low temperature mechanical properties of epoxy resin[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [11] CHO C S, CHEN L W, CHIU Y S. Novel flame retardant epoxy resins[J]. Polymer Bulletin,1998,41:45-42. doi: 10.1007/s002890050331
    [12] RAPAPORT D C. The art of molecular dynamics simulation[M]. Cambridge: Cambridge University Press, 2004: 146-149.
    [13] ALLEN M P. Introduction to molecular dynamics simulation[J]. Computational Soft Matter: From Synthetic Polymers to Proteins,2004,23(1):1-28.
    [14] TUCKERMAN M E, MARTYNA G J. Understanding modern molecular dynamics: Techniques and applications[J]. Journal of Physical Chemistry B,2000,104(2):159-178. doi: 10.1021/jp992433y
    [15] BINDER K. Monte carlo and molecular dynamics simulations in polymer science[M]. Oxford: Oxford University Press, 1995: 232.
    [16] 苗青. 改性SAPO-34催化性能的分子模拟研究[D]. 天津: 天津大学, 2009.

    MIAO Qing. Molecular simulation study on the catalytic performance of modified SAPO-34[D]. Tianjin: Tianjin University, 2009(in Chinese).
    [17] 张缨. 有机物系溶液结晶过程中形态学控制研究[D]. 天津: 天津大学, 2005.

    ZHANG Ying. Research on morphology control in the solution crystallization process of organic compounds[D]. Tianjin: Tianjin University, 2005(in Chinese).
    [18] LI C, STRACHAN A. Molecular simulations of crosslinking process of thermosetting polymers[J]. Polymer,2010,51:6058-6070. doi: 10.1016/j.polymer.2010.10.033
    [19] 傅毅. 分子模拟及其在生物工程上的应用[D]. 无锡: 江南大学, 2010.

    FU Yi. Molecular simulation and its application in bioengineering[D]. Wuxi: Jiangnan University, 2010(in Chinese).
    [20] 王秀丽, 孙丽朋. 分子模拟在高分子材料研究中的应用[J]. 齐鲁石油化工, 2008, 36(4):331-333, 342. doi: 10.3969/j.issn.1009-9859.2008.04.018

    WANG Xiuli, SUN Lipeng. The application of molecular simulation in the research of polymer materials[J]. Qilu Petrochemical Industry,2008,36(4):331-333, 342(in Chinese). doi: 10.3969/j.issn.1009-9859.2008.04.018
    [21] GRAZIANO G. Comment on “The mechanism of hydrophobic solvation depends on solute radius”[J]. The Journal of Physical Chemistry B, 2001, 105(10): 2079-2081.
    [22] 范世领, 张恒, 张冬菊. 分子模拟—理论与实验[M]. 北京: 化学工业出版社, 2016: 6-7.

    FAN Shiling, ZHANG Heng, ZHANG Dongju. Molecular simulation—Theory and experiment[M]. Beijing: Chemical Industry Press, 2016: 6-7(in Chinese).
    [23] SANDITOV D S, RAZUMOVSKAYA I V. New approach to justification of the Williams-Landel-Ferry equation[J]. Polymer Science: Series A, 2018: 60(2): 156-161.
    [24] D'ALMEIDA J R M, CELLA N. Analysis of the fracture behavior of epoxy resins under impact conditions[J]. Journal of Applied Polymer Science,2000,77(11):2486-2492. doi: 10.1002/1097-4628(20000912)77:11<2486::AID-APP18>3.0.CO;2-K
    [25] WILLEMS T F, RYCROFT C H, KAZI M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials,2012,149(1):134-141.
  • 加载中
图(7)
计量
  • 文章访问数:  1006
  • HTML全文浏览量:  404
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-09-23
  • 录用日期:  2021-10-23
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回