留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钛陶瓷浆料的制备及其直写成型3D打印

李西敏 杨韬 彭必友 陈刚 韩锐 王倩

李西敏, 杨韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7): 3510-3517. doi: 10.13801/j.cnki.fhclxb.20210817.001
引用本文: 李西敏, 杨韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7): 3510-3517. doi: 10.13801/j.cnki.fhclxb.20210817.001
LI Ximin, YANG Tao, PENG Biyou, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3510-3517. doi: 10.13801/j.cnki.fhclxb.20210817.001
Citation: LI Ximin, YANG Tao, PENG Biyou, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3510-3517. doi: 10.13801/j.cnki.fhclxb.20210817.001

二氧化钛陶瓷浆料的制备及其直写成型3D打印

doi: 10.13801/j.cnki.fhclxb.20210817.001
基金项目: 国家自然科学基金(51703182);西华大学人才引进项目(Z202075)
详细信息
    通讯作者:

    彭必友,博士,副教授,硕士生导师,研究方向为先进成型技术及智能装备的研发 E-mail: pengbiyou@126.com

    陈刚,博士,讲师,硕士生导师,研究方向为聚合物基及陶瓷基材料的增材制造 E-mail:gangchen@mail.xhu.edu.cn

  • 中图分类号: TB332

Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing

  • 摘要: 直写成型技术是一种基于浆料挤出的3D打印技术,具有设备简单、投入低,可在温和条件下制备出精细复杂的三维结构的优点,在先进陶瓷制备领域潜力巨大。但直写成型技术目前面临材料缺乏、浆料制备困难等难题。为此,首先自主研发了一种基于气压式的新型直写成型3D打印机。在此基础上,以二氧化钛为原料,选用聚乙烯醇(PVA)作为流动助剂和粘结剂,制备了适用于直写成型的二氧化钛陶瓷浆料,研究了PVA含量对浆料流变行为及其直写成型可打印性的影响。在此基础上,打印加工了具有复杂形状和结构的二氧化钛制件,考察了其断面形貌、打印精度,并进一步分析了其烧结后的性能等。结果表明PVA的加入有效的降低浆料的黏度,提高其流动性,有助于其3D打印,改善了打印制件层与层之间的粘结情况,但PVA含量大于10wt%后,会导致浆料在沉积阶段出现坍塌现象。此外,PVA含量增加后,会导致烧结件硬度降低,收缩率增加。

     

  • 图  1  自主研发打印设备及其打印过程图:(a)打印机设计图;(b)打印机实物图;(c)和(d)打印过程图

    Figure  1.  Independently developed printing equipment and its printing process diagram: (a) Printer design drawing; (b) Printer physical drawing; (c) and (d) Printing process diagram

    图  2  TiO2陶瓷浆料的制备示意图

    Figure  2.  Schematic of the preparation process of TiO2 ceramic slurry

    PVA—Polyvinyl alcohol; DIW—Direct-ink-writing

    图  3  不同PVA含量下TiO2浆料的流变特性:(a) 不同PVA含量的TiO2浆料黏度与剪切速率关系图;(b) 不同PVA含量的TiO2浆料的复数模量与剪切应力关系图;(c) 不同PVA含量的TiO2浆料的屈服应力图;(d) 不同PVA含量的TiO2浆料的临界挤出压力图

    Figure  3.  Rheological properties of TiO2 slurry with different PVA contents: (a) Viscosity versus shear rate of TiO2 slurry with different PVA contents; (b) Complex modulus versus shear stress of TiO2 slurry with different PVA contents; (c) Yield stress of TiO2 slurry with various PVA contents; (d) Critical extrusion pressure of TiO2 slurry with various PVA contents

    G'—Storage modules; G''—Loss modules

    图  4  不同PVA含量下浆料的储能模量和屈服应力

    Figure  4.  Storage modulus and yield stress of slurry with different PVA contents

    τy—Yield stress

    图  5  打印件横截面的扫描电镜图像及平均粒径图:((a)、(d)) 5wt%PVA;((b)、(e)) 10wt%PVA;((c)、(f)) 15wt%PVA;(g) 原始TiO2粉末;(h) 平均粒径图

    Figure  5.  SEM images and average particle size diagram of the cross-section of the printed parts: ((a), (d)) 5wt%PVA; ((b), (e)) 10wt%PVA; ((c), (f)) 15wt% PVA; (g) Original TiO2 powder; (h) Average particle size image

    图  6  调整参数后的打印样品: (a) 圆螺旋结构;(b) 多层圆螺旋结构;(c) 迂回周期结构;(d) 多层迂回周期结构;(e) 稀疏多层木堆结构;(f) 致密多层木堆结构

    Figure  6.  Various complex shapes of TiO2 ceramic parts prepared by DIW 3D printing: (a) Circular spiral structure; (b) Multi-layer circular spiral structure; (c) Circuitous periodic structure; (d) Multilayer circuitous periodic structure; (e) Sparse multi-layer wood pile structure; (f) Dense multi-layer wood pile structure

    图  7  打印制件的精度分析

    Figure  7.  Precision analysis of the as-printed parts

    图  8  不同PVA含量下打印件的金相图片及其力学性能:((a)、(d)) PVA含量为5wt%的烧结件及其金相照片;((b)、(e)) PVA含量为10wt%的烧结件及其金相照片;((c)、(f)) PVA含量为15wt%的烧结件及其金相照片;(g) 维氏硬度;(h) 烧结收缩率

    Figure  8.  Metallographic pictures and mechanical properties of prints with different PVA contents: ((a), (d)) Sintered part with 5wt%PVA content and its metallographic picture; ((b), (e)) Sintered part with 10wt%PVA content and its metallographic picture; ((c), (f)) Sintered part with 15wt%PVA content and its metallographic picture; (g) Vickers hardness; (h) Sintering shrinkage

    表  1  TiO2浆料配比表

    Table  1.   Proportion table of TiO2 slurries

    PVA content/wt%TiO2/%H2O/%
    0 66.7 33.3
    5 63.3 31.7
    10 60.0 30.0
    15 56.7 28.3
    20 53.3 26.7
    下载: 导出CSV
  • [1] STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: A review[J]. Journal of the American Ceramic Society,2006,89(6):1771-1789. doi: 10.1111/j.1551-2916.2006.01044.x
    [2] 姬梅梅, 朱时珍, 马壮. 航空航天用金属表面热防护涂层的研究进展[J]. 表面技术, 2021, 50(1):253-266.

    JI Meimei, ZHU Shizhen, MA Zhuang. Advance in the research of thermal protecticve coatings on aerospace metal surface[J]. Surface Technology,2021,50(1):253-266(in Chinese).
    [3] 方光武, 高希光, 宋迎东. 陶瓷基复合材料多层界面相应力传递的有限元模拟[J]. 复合材料学报, 2018, 35(12):3415-3422.

    FANG Guangwu, GAO Xiguang, SONG Yingdong, et al. Finite element simulation of stress transfer through the multilayer interphase in ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2018,35(12):3415-3422(in Chinese).
    [4] HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics: An application based review[J]. Ceramics International,2014,40(10):15351-15370. doi: 10.1016/j.ceramint.2014.06.095
    [5] ALLEGRETTA I, ERAMO G, PINTO D, et al. The effect of mineralogy, microstructure and firing temperature on the effective thermal conductivity of traditional hot processing ceramics[J]. Applied Clay Science,2017,135:260-270. doi: 10.1016/j.clay.2016.10.001
    [6] SIGMUND W M, BELL N S, BERGSTRÖM L. Novel powder-processing methods for advanced ceramics[J]. Journal of the American Ceramic Society,2000,83(7):1557-1574.
    [7] CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: A review[J]. Journal of the European Ceramic Society,2019,39(4):661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
    [8] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese).
    [9] 王艳, 范泽文, 赵建, 等. 3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料[J]. 复合材料学报, 2019, 36(1):1-6.

    WANG Yan, FAN Zewen, ZHAO Jian, et al. 3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interfernce shielding[J]. Acta Materiae Compositae Sinica,2019,36(1):1-6(in Chinese).
    [10] M’BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports,2017,7(1):1-10. doi: 10.1038/s41598-016-0028-x
    [11] ASGHARI ABID A, SHEIKHI A, SHAHHOSSEINI M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering[J]. Biofabrication,2020,12(4):045006.
    [12] LI Y Y, LI L T, LI B. Direct ink writing of 3-3 piezoelectric composite[J]. Journal of Alloys and Compounds,2015,620:125-128. doi: 10.1016/j.jallcom.2014.09.124
    [13] FRANCHIN G, WAHL L, COLOMBO P. Direct ink writing of ceramic matrix composite structures[J]. Journal of the American Ceramic Society,2017,100(10):4397-4401. doi: 10.1111/jace.15045
    [14] 杨海英, 郭蕊, 任泽春, 等. 抗氧剂/光稳定剂对3D打印光致变色木塑复合材料性能的影响[J]. 复合材料学报, 2021, 38(3):761-769.

    YANG Haiying, GUO Rui, REN Zechun, et al. Effect of antioxidant/light stabilizer on properties of 3D printed photochromic wood-plastic composites[J]. Acta Materiae Compositae Sinica,2021,38(3):761-769(in Chinese).
    [15] LEWIS J A. Colloidal processing of ceramics[J]. Journal of the American Ceramic Society,2000,83(10):2341-2359.
    [16] REVELO C F, COLORADO H A. 3D printing of kaolinite clay ceramics using the direct ink writing (DIW) technique[J]. Ceramics International,2018,44(5):5673-5682. doi: 10.1016/j.ceramint.2017.12.219
    [17] AN T, HWANG K T, KIM J H, et al. Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension[J]. Ceramics International,2020,46(5):6469-6476. doi: 10.1016/j.ceramint.2019.11.127
    [18] LIU H J, LI D J, LI Y M. Investigation on paste extrudate features in ram extrusion process[J]. Applied Mechanics and Materials,2012,159:146-150. doi: 10.4028/www.scientific.net/AMM.159.146
    [19] SMAY J E, GRATSON G M, SHEPHERD R F, et al. Directed colloidal assembly of 3D periodic structures[J]. Advanced Materials,2002,14(18):1279-1283. doi: 10.1002/1521-4095(20020916)14:18<1279::AID-ADMA1279>3.0.CO;2-A
    [20] SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures[J]. Langmuir,2002,18(14):5429-5437. doi: 10.1021/la0257135
    [21] CHAN S S L, PENNINGE R M, EDWARDS L, et al. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability[J]. Additive Manufacturing,2020,35:101335. doi: 10.1016/j.addma.2020.101335
    [22] CHAN S S L, SESSO M L, FRANKS G V. Direct ink writing of hierarchical porous alumina-stabilized emulsions: Rheology and printability[J]. Journal of the American Ceramic Society,2020,103(10):5554-5566. doi: 10.1111/jace.17305
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1615
  • HTML全文浏览量:  638
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-07-28
  • 录用日期:  2021-08-04
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回