留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牛血清白蛋白诱导聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸导电互穿网络水凝胶制备与性能

黄云锋 李德 王楠 马姣

黄云锋, 李德, 王楠, 等. 牛血清白蛋白诱导聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸导电互穿网络水凝胶制备与性能[J]. 复合材料学报, 2023, 40(9): 5330-5340. doi: 10.13801/j.cnki.fhclxb.20221124.001
引用本文: 黄云锋, 李德, 王楠, 等. 牛血清白蛋白诱导聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸导电互穿网络水凝胶制备与性能[J]. 复合材料学报, 2023, 40(9): 5330-5340. doi: 10.13801/j.cnki.fhclxb.20221124.001
HUANG Yunfeng, LI De, WANG Nan, et al. Synthesis and properties of poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid conductive interpenetrated hydrogel induced by bovine serum albumin[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5330-5340. doi: 10.13801/j.cnki.fhclxb.20221124.001
Citation: HUANG Yunfeng, LI De, WANG Nan, et al. Synthesis and properties of poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid conductive interpenetrated hydrogel induced by bovine serum albumin[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5330-5340. doi: 10.13801/j.cnki.fhclxb.20221124.001

牛血清白蛋白诱导聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸导电互穿网络水凝胶制备与性能

doi: 10.13801/j.cnki.fhclxb.20221124.001
基金项目: 国家自然科学基金(51903185)
详细信息
    通讯作者:

    马姣,博士,讲师,硕士生导师,研究方向为生物传感与生物电子 E-mail: majiao@tyut.edu.cn

  • 中图分类号: TB332;TQ427.2

Synthesis and properties of poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid conductive interpenetrated hydrogel induced by bovine serum albumin

Funds: National Natural Science Foundation of China (51903185)
  • 摘要: 由于具有优异的导电性、生物相容性、柔韧性和稳定性,聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)导电水凝胶被广泛用于生物传感、神经电极及可穿戴电子等领域。但是,目前合成PEDOT:PSS导电水凝胶大都是通过大幅增加离子强度和降低pH改变PEDOT:PSS的聚集状态使其成胶,条件较苛刻。本文发现一种温和的PEDOT:PSS成胶方法,即通过对牛血清白蛋白(BSA)进行解折叠,改变空间构象,随后充分暴露的多肽链能够原位诱导PEDOT:PSS一步快速形成PEDOT:PSS/BSA互穿网络导电水凝胶。研究表明,该水凝胶不仅保持了PEDOT:PSS网络优异的导电性,同时解折叠的BSA赋予凝胶优异的溶胀性、力学性能和热性能。水凝胶溶血率均低于5%,表明其具有良好的细胞相容性,同时观察到该互穿凝胶能够在人体皮肤、橡胶、塑料和玻璃等多种基底材料上进行黏附,而且由于网络中大量的非共价键存在,该凝胶展现出优异的自愈合性能。总之,本文提供的PEDOT:PSS/BSA互穿网络水凝胶的制备方法及优异性能使其在可穿戴电子及伤口敷料等领域具有良好的应用前景。

     

  • 图  1  (a) PEDOT:PSS/BSA导电水凝胶制备示意图;(b) 不同BSA浓度的成胶时间;(c) 不同原料含量的成胶示意图(左列:表2编号b和h;中间:表2编号e、f、g;右列:表2编号a、b、c、d、e)

    Figure  1.  (a) Schematic diagram of the preparation of PEDOT:PSS/BSA conductive hydrogels; (b) Gel formation time at different BSA concentrations; (c) Schematic diagram of gel formation with different raw material contents ( Left column: Numbers b and h from Table 2; Middle: Numbers e, f, g in Table 2; Right column: numbers a, b, c, d, e from Table 2)

    TCEP—Tri(2-carboxyethyl) phosphine

    图  2  (a) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的FTIR图谱;(b) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的SEM图像

    Figure  2.  (a) FTIR spectra of PEDOT:PSS/BSA conductive hydrogels with different BSA contents; (b) SEM images of PEDOT:PSS/BSA conductive hydrogels with different BSA contents

    图  3  (a) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的流变行为;(b) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的TG曲线(插图是DTG曲线)

    Figure  3.  (a) Rheological behavior of PEDOT:PSS/BSA conductive hydrogels with different BSA contents; (b) TG curves of PEDOT:PSS/BSA conductive hydrogels with different BSA contents (Illustration is the DTG curves)

    G'—Storage modulus; G''—Loss modulus; a—Pure PEDOT:PSS gel; b—PEDOT:PSS/BSA1 gel; c—PEDOT:PSS/BSA2 gel; d—PEDOT:PSS/BSA3 gel

    图  4  (a) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的XRD图谱;(b) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的DSC曲线

    Figure  4.  (a) XRD patterns of PEDOT:PSS/BSA conductive hydrogels with different BSA contents; (b) DSC curves of PEDOT:PSS/BSA conductive hydrogels with different BSA contents

    图  5  (a) 不同BSA含量PEDOT:PSS/BSA导电水凝胶的电导率;(b) PEDOT:PSS/BSA3导电水凝胶可以作为导线点亮发光二极管(LED)小灯泡

    Figure  5.  (a) Conductivity of PEDOT:PSS/BSA conductive hydrogels with different BSA contents; (b) PEDOT:PSS/BSA3 conductive hydrogels can be used as a wire to light up small light emitting diode (LED) bulbs

    图  6  (a) 不同BSA含量的PEDOT:PSS/BSA导电水凝胶在不同浸泡时间下的溶胀度;(b) 不同BSA含量的PEDOT:PSS/BSA导电水凝胶的饱和溶胀度

    Figure  6.  (a) Swelling degree of PEDOT:PSS/BSA conductive hydrogels with different BSA contents under different soaking time; (b) Saturated swelling degree of PEDOT:PSS/BSA conductive hydrogels with different BSA contents

    图  7  (a) PEDOT:PSS/BSA导电水凝胶良好的柔韧性使它被压缩变形后而不断裂;(b) 不同BSA含量的PEDOT:PSS/BSA导电水凝胶的压缩应力应变曲线

    Figure  7.  (a) Good flexibility of PEDOT:PSS/BSA conductive hydrogels allows it to be compressed and deformed without breaking; (b) Compressive stress-strain curves of PEDOT:PSS/BSA conductive hydrogels with different BSA contents

    图  8  不同BSA含量PEDOT:PSS/BSA导电水凝胶的溶血效果图 (a) 和溶血率 (b)

    Figure  8.  Hemolysis effect chart (a) and hemolysis rate (b) of PEDOT:PSS/BSA conductive hydrogels with different BSA content

    NC—Negative control group; PC—Positive control group; 1#—Pure PEDOT:PSS gel; 2#—PEDOT:PSS/BSA1 gel; 3#—PEDOT:PSS/BSA2 gel; 4#—PEDOT:PSS/BSA3 gel

    图  9  PEDOT:PSS/BSA导电水凝胶的自修复性

    Figure  9.  Self-healing property of PEDOT:PSS/BSA conductive hydrogel

    图  10  PEDOT:PSS/BSA导电水凝胶在不同基底下的黏附性

    Figure  10.  Adhesion of PEDOT:PSS/BSA conductive hydrogel under different substrates

    表  1  聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)/牛血清白蛋白(BSA)导电水凝胶的命名

    Table  1.   Naming of poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS)/bovine serum albumin (BSA) conductive hydrogels

    Sample BSA
    content/
    (mg·mL−1)
    DBSA/μL PEDOT:
    PSS/mL
    PEDOT:PSS 40 1
    PEDOT:PSS/BSA1 40 1
    PEDOT:PSS/BSA2 70 1
    PEDOT:PSS/BSA3 100 1
    Note: DBSA—Dodecylbenzene sulfonic acid.
    下载: 导出CSV

    表  2  导电水凝胶PEDOT:PSS/BSA的配方

    Table  2.   Formulation of conductive hydrogel of PEDOT:PSS/BSA

    NumberSolvent systemBSA/(mg·mL−1)Urea/(mg·mL−1)TCEP/(mg·mL−1)
    a PEDOT:PSS 15 540 3
    b PEDOT:PSS 20 540 3
    c PEDOT:PSS 40 540 3
    d PEDOT:PSS 70 540 3
    e PEDOT:PSS 100 540 3
    f PEDOT:PSS 100 540 0
    g PEDOT:PSS 100 0 3
    h Water 20 540 3
    下载: 导出CSV
  • [1] 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5):2646-2664. doi: 10.16085/j.issn.1000-6613.2020-1196

    WANG Siheng, YANG Xinxin, LIU He, et al. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress,2021,40(5):2646-2664(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1196
    [2] ZHAO Y S, LO C Y, RUAN L C, et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics,2021,6(53):eabd5483. doi: 10.1126/scirobotics.abd5483
    [3] 韩景泉, 王慧祥, 岳一莹, 等. 纤维素纳米纤丝-碳纳米管/聚乙烯醇-硼酸盐复合导电水凝胶[J]. 复合材料学报, 2017, 34(10):2312-2320. doi: 10.13801/j.cnki.fhclxb.20170420.001

    HAN Jingquan, WANG Huixiang, YUE Yiying, et al. Cellulose nanofiber-carbon nanotube/polyvinyl alcohol-borax hybrid conductive hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(10):2312-2320(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170420.001
    [4] SUJOY D, PATRICK M, GLEB V, et al. Processable, ion-conducting hydrogel for flexible electronic devices with self-healing capability[J]. Macromolecules,2020,53(24):11130-11141. doi: 10.1021/acs.macromol.0c02060
    [5] ZHENG Y Q, LIU Y X, ZHONG D L, et al. Monolithic optical microlithography of high-density elastic circuits[J]. Science,2021,373(6550):88-94. doi: 10.1126/science.abh3551
    [6] LIANG Y Y, OFFENHÄUSSER A, INGEBRANDT S, et al. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals[J]. Advanced Healthcare Materials,2021,10(11):2100061. doi: 10.1002/adhm.202100061
    [7] YAO B W, WANG H Y, ZHOU Q Q, et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures[J]. Advanced Materials,2017,29(28):1700974. doi: 10.1002/adma.201700974
    [8] XU Z Y, SONG J Y, LIU B R, et al. A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat[J]. Sensors and Actuators B: Chemical,2021,348:130674. doi: 10.1016/j.snb.2021.130674
    [9] LIU Y X, LI J X, SONG S, et al. Author correction: Morphing electronics enable neuromodulation in growing tissue[J]. Nature Biotechnology,2020,38(9):1031-1036. doi: 10.1038/s41587-020-0495-2
    [10] ZHANG R L, XU X F, FAN X X, et al. Application of conducting micelles self-assembled from commercial poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and chitosan for electrochemical biosensor[J]. Colloid and Polymer Science,2018,296(3):495-502. doi: 10.1007/s00396-018-4270-6
    [11] JIA Z R, GONG J L, ZENG Y, et al. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes[J]. Advanced Functional Mate-rials,2021,31(19):2010461. doi: 10.1002/adfm.202010461
    [12] ZENG J, DONG L B, SHA W X, et al. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors[J]. Chemical Engineering Journal,2020,383:123098. doi: 10.1016/j.cej.2019.123098
    [13] ZHANG S M, CHEN Y H, LIU H, et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics[J]. Advanced Materials,2020,32:1904752. doi: 10.1002/adma.201904752
    [14] FEIG V R, TRAN H, LEE M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue[J]. Nature Communications,2018,9(1):5030. doi: 10.1038/s41467-018-07487-1
    [15] BAI Y, LI S D, LI X P, et al. An injectable robust denatured albumin hydrogel formed via double equilibrium reactions[J]. Journal of Biomaterials Science Polymer Edition,2019,30(8):662-678. doi: 10.1080/09205063.2019.1600821
    [16] BURNS J A, BUTLER J C, MORAN J, et al. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine[J]. The Journal of Organic Chemistry,1991,56(8):2648-2650. doi: 10.1021/jo00008a014
    [17] 徐国恒. 二硫键与蛋白质的结构[J]. 生物学通报, 2010, 45(5):5-7. doi: 10.3969/j.issn.0006-3193.2010.05.002

    XU Guoheng. The disulfide bond and protein structure[J]. Bulletin of Biology,2010,45(5):5-7(in Chinese). doi: 10.3969/j.issn.0006-3193.2010.05.002
    [18] BASHIR S, HINA M, IQBAL J, et al. Self-healable poly (N, N-dimethylacrylamide)/poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate composite hydrogel electrolytes for aqueous supercapacitors[J]. Journal of Energy Storage,2022,45:103760. doi: 10.1016/j.est.2021.103760
    [19] KHANNA S, SINGH A K, BEHERA S P, et al. Thermoresponsive BSA hydrogels with phase tunability[J]. Materials Science and Engineering: C,2021,119:111590. doi: 10.1016/j.msec.2020.111590
    [20] CSACH K, JURÍKOVÁ A, MIŠKUF J, et al. Thermogravimetric study of the decomposition of BSA-coated magnetic nanoparticles[J]. Acta Physica Polonica A,2012,121(5-6):1293-1295. doi: 10.12693/APhysPolA.121.1293
    [21] 徐翔宇, 李弘坤, 詹达, 等. PEDOT: PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10):1734-1737. doi: 10.11896/cldb.18040192

    XU Xiangyu, LI Hongkun, ZHAN Da, et al. Semiconducting properties of PEDOT: PSS doped silk fibroin composite film[J]. Materials Reports,2019,33(10):1734-1737(in Chinese). doi: 10.11896/cldb.18040192
    [22] SABAA M W, HANNA D H, ABU ELELLA M H, et al. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery[J]. Materials Science and Engineering: C,2019,94:1044-1055. doi: 10.1016/j.msec.2018.10.040
    [23] ISO. Biological evaluation of medical devices—Part 4: Selection of tests for interactions with blood: ISO 10993-4[S]. Geneve: ISO, 2017.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  681
  • HTML全文浏览量:  419
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-06
  • 修回日期:  2022-11-10
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-11-25
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回