留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应

李创 王宇 张亚男 候利强 刘希恩

李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应[J]. 复合材料学报, 2023, 40(3): 1552-1559. doi: 10.13801/j.cnki.fhclxb.20220510.002
引用本文: 李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应[J]. 复合材料学报, 2023, 40(3): 1552-1559. doi: 10.13801/j.cnki.fhclxb.20220510.002
LI Chuang, WANG Yu, ZHANG Yanan, et al. Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1552-1559. doi: 10.13801/j.cnki.fhclxb.20220510.002
Citation: LI Chuang, WANG Yu, ZHANG Yanan, et al. Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1552-1559. doi: 10.13801/j.cnki.fhclxb.20220510.002

氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应

doi: 10.13801/j.cnki.fhclxb.20220510.002
基金项目: 山东省泰山学者基金(ts201712045)
详细信息
    通讯作者:

    候利强,博士,副教授,硕士生导师,研究方向为电催化 Email: houliqiang@qust.edu.cn

    刘希恩,博士,教授,博士生导师,研究方向为电催化 Email: liuxien@qust.edu.cn

  • 中图分类号: TB331;O646

Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction

Funds: Taishan Scholar Program of Shandong Province (ts201712045)
  • 摘要: 开发价格低廉、储量丰富、高效的析氧反应(OER)电催化剂对于可持续能源的转换具有重要意义。目前,虽然尖晶石型二元过渡金属氧化物表现出了很有潜力的OER活性,但其固有的低电导率一定程度上降低了其电化学性能。本文提出了一种通过金属有机框架(MOF)辅助合成表面部分暴露的CoFe2O4纳米颗粒负载在氮掺杂碳基底上(CoFe2O4@NC)的方法,且CoFe2O4@NC具有优良的催化活性。在碱性介质中,CoFe2O4@NC表现出了优异的OER活性,在10 mA·cm−2电流密度的过电势仅为1.517 V,Tafel斜率为87 mV·dec−1,这是由于CoFe2O4@NC具有足够暴露的活性位点和较高的电子转移能力。此外,CoFe2O4@NC能稳定运行15 h,具有出色的稳定性。该工作将为探索经济高效的OER电催化剂开辟一条新途径,替代贵金属在可再生能源转换中应用。

     

  • 图  1  CoFe2O4@氮掺杂碳衬底(NC)催化剂制备过程示意图

    Figure  1.  Schematic diagram of the preparation process of the CoFe2O4@nitrogen doped carbon substrate (NC) catalyst

    图  2  CoFe2O4@NC的XRD图谱(a)和SEM图像(b)

    Figure  2.  XRD pattern (a) and SEM image (b) of CoFe2O4@NC

    图  3  ((a)~(b)) CoFe2O4@NC的TEM图像;(c) CoFe2O4@NC中纳米颗粒的HRTEM图像;(d) CoFe2O4@NC的Raman图谱

    Figure  3.  ((a)-(b)) TEM images of CoFe2O4/NC; (c) HRTEM images of nanoparticles in CoFe2O4/NC; (d) Raman spectra of CoFe2O4/NC

    图  4  CoFe2O4@NC的XPS图谱

    Figure  4.  XPS spectra of CoFe2O4@NC

    图  5  CoFe2O4@NC结构中Co2p (a)、Fe2p (b)、O1s (c)、Cl2p (d)、C1s (e) 和N1s (f) 的高分辨率XPS光谱

    Figure  5.  High-resolution XPS spectra of Co2p (a), Fe2p (b), O1s (c), Cl2p (d), C1s (e) and N1s (f) of CoFe2O4@NC

    图  6  (a) CoFe2O4@NC-X(X=350、450、550℃)催化剂在1 mol/L KOH中的极化曲线;(b) 根据图6(a)中的极化曲线得出的CoFe2O4@NC-X(X=350、450、550℃)的塔菲尔斜率;((c)~(e)) CoFe2O4@NC-X(X=350、450、550℃)在不同扫描速率(20~120 mV·s−1)下的CV曲线;(f) 双层电容(Cdl)和相对电化学活性表面积

    Figure  6.  (a) Polarization curves of CoFe2O4@NC-X (X=350, 450, 550℃) catalyst in 1 mol/L KOH; (b) Tafel slopes of CoFe2O4@NC-X (X=350, 450, 550℃) derived from Polarization curves in Fig. 6(a); ((c)-(e)) Voltammograms of the CoFe2O4@NC-X (X=350, 450, 550℃) at various scan rates (20-120 mV·s−1) ; (f) Double layer capacitance (Cdl) and relative electrochemically active surface area

    RHE—Reversible hydrogen electrode; j—Electric current density; janodic—Anodic current density; jcathodic—Cathodic current density

    图  7  (a) CoFe2O4@NC-X(X=350、450、550℃)的EIS图;不同摩尔比催化剂的极化曲线 (b) 和相应的塔菲尔曲线 (c);(d) CoFe2O4@NC-450℃在1 mol/L KOH中的计时电位测试

    Figure  7.  (a) Nyquist plots of CoFe2O4/NC-X (X=350, 450, 550℃); Polarization curves obtained with different proportions of catalysts (b) and corresponding Tafel plots (c); (d) Chronoamperometric measurement of CoFe2O4/NC-450℃ in 1 mol/L KOH

  • [1] XU H, FENG J X, TONG Y X, et al. Cu2O-Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media[J]. ACS Catalysis,2016,7(2):986-991.
    [2] AL-MAMUN M, WANG Y, LIU P, et al. One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction[J]. Journal of Materials Chemistry A,2016,4(47):18314-18321. doi: 10.1039/C6TA07962H
    [3] LIANG J, WANG Y Z, WANG C C, et al. In situ formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions[J]. Journal of Materials Chemistry A,2016,4(25):9797-9806. doi: 10.1039/C6TA03729A
    [4] XU L, JIANG Q, XIAO Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition,2016,55(17):5277-5281. doi: 10.1002/anie.201600687
    [5] EXNER B, BAYARMAGNAI B, JIA F, et al. Iron-catalyzed decarboxylation of trifluoroacetate and its application to the synthesis of trifluoromethyl thioethers[J]. Chemistry A European Journal, 2015, 21(48): 17220-17223.
    [6] GAO X, ZHANG H, LI Q, et al. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angewandte Chemie International Edition,2016,55(21):6290-6294. doi: 10.1002/anie.201600525
    [7] ZHU C, FU S, DU D, et al. Facilely tuning porous NiCo2O4 nanosheets with metal valence-state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting[J]. Chemistry A European Journal,2016,22(12):4000-4007. doi: 10.1002/chem.201504739
    [8] MCCRORY C C L, LIN C C. Effect of chromium doping on electrochemical water oxidation activity by Co3-xCrxO4 spinel catalysts [J]. ACS Catalysis, 2016, 7(1): 443-451.
    [9] LIU Y, LI J, LI F, et al. A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A,2016,4(12):4472-4478. doi: 10.1039/C5TA10420C
    [10] AL-MAMUN M, SU X, ZHANG H, et al. Strongly coupled CoCr2O4/carbon nanosheets as high performance electrocatalysts for oxygen evolution reaction[J]. Small,2016,12(21):2866-2871. doi: 10.1002/smll.201600549
    [11] SUN C, YANG J, DAI Z, et al. Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor[J]. Nano Research,2016,9(5):1300-1309. doi: 10.1007/s12274-016-1025-x
    [12] SUN X, ZHU X, YANG X, et al. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries[J]. Green Energy & Environment,2017,2(2):160-167.
    [13] TIAN G L, ZHAO M Q, YU D, et al. Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction[J]. Small,2014,10(11):2251-2259. doi: 10.1002/smll.201303715
    [14] ZHAO Y, NAKAMURA R, KAMIYA K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nature Communication,2013,4:2390. doi: 10.1038/ncomms3390
    [15] MENG Y, ZOU X, HUANG X, et al. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation[J]. Advanced Materials,2014,26(37):6510-6516. doi: 10.1002/adma.201401969
    [16] LI Y P, ZHANG J H, LIU Y, et al. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis[J]. Science Advances,2020,6:4197. doi: 10.1126/sciadv.abb4197
    [17] LI T, LV Y, SU J, et al. Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction[J]. Advanced Science,2017,4(11):1700226. doi: 10.1002/advs.201700226
    [18] LU X F, GU L F, WANG J W, et al. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction[J]. Advanced Materials,2017,29(3):1604437. doi: 10.1002/adma.201604437
    [19] HOU L, YANG W, LI R, et al. Self-reconstruction strategy to synthesis of Ni/Co-OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage[J]. Chemical Engineering Journal,2020,396:125323. doi: 10.1016/j.cej.2020.125323
    [20] WANG Y, HU G, FENG Y, et al. Formation of p-BN@Zn/Co-ZIF hybrid materials for improved photocatalytic CO2 reduction by H2O[J]. Materials Research Bulletin, 2022, 152: 111867.
    [21] WU T, MA Z, HE Y, et al. A covalent black phosphorus/metal-organic framework hetero-nanostructure for high-performance flexible supercapacitors[J]. Angewandte Chemie International Edition, 2021, 60(18): 10366-10374.
    [22] FENG J X, YE S H, XU H, et al. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction[J]. Advanced Materials,2016,28(23):4698-4703. doi: 10.1002/adma.201600054
    [23] LI X, JIANG L, ZHOU C, et al. Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors[J]. NPG Asia Materials,2015,7(3):e165. doi: 10.1038/am.2015.11
    [24] HOU L, YANG W, XU X, et al. In-situ formation of oxygen-vacancy-rich NiCo2O4/nitrogen-deficient graphitic carbon nitride hybrids for high-performance supercapacitors[J]. Electrochimica Acta,2020,340:135996. doi: 10.1016/j.electacta.2020.135996
    [25] TU K, TRANCA D, RODRIGUEZ-HERNANDEZ F, et al. A novel heterostructure based on rumo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Advanced Materials,2020,32(46):e2005433. doi: 10.1002/adma.202005433
    [26] AN L, WEI C, LU M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment[J]. Advanced Materials,2021,33(20):e2006328. doi: 10.1002/adma.202006328
    [27] LI J, CHU D, DONG H, et al. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides[J]. Journal of the American Chemical Society,2020,142(1):50-54. doi: 10.1021/jacs.9b10882
  • 加载中
图(8)
计量
  • 文章访问数:  901
  • HTML全文浏览量:  318
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-04-23
  • 录用日期:  2022-05-01
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回