留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外光交联低压三元乙丙橡胶电缆绝缘材料配方与性能

邵满智 赵洪 李春阳 杨旭 韩志东 岳振国

邵满智, 赵洪, 李春阳, 等. 紫外光交联低压三元乙丙橡胶电缆绝缘材料配方与性能[J]. 复合材料学报, 2022, 39(12): 5922-5933. doi: 10.13801/j.cnki.fhclxb.20211217.003
引用本文: 邵满智, 赵洪, 李春阳, 等. 紫外光交联低压三元乙丙橡胶电缆绝缘材料配方与性能[J]. 复合材料学报, 2022, 39(12): 5922-5933. doi: 10.13801/j.cnki.fhclxb.20211217.003
SHAO Manzhi, ZHAO Hong, LI Chunyang, et al. Formulation and properties of UV crosslinked low voltage ethylene propylene diene monomer cable insulation material[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5922-5933. doi: 10.13801/j.cnki.fhclxb.20211217.003
Citation: SHAO Manzhi, ZHAO Hong, LI Chunyang, et al. Formulation and properties of UV crosslinked low voltage ethylene propylene diene monomer cable insulation material[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5922-5933. doi: 10.13801/j.cnki.fhclxb.20211217.003

紫外光交联低压三元乙丙橡胶电缆绝缘材料配方与性能

doi: 10.13801/j.cnki.fhclxb.20211217.003
基金项目: 国家自然科学基金(52107015)
详细信息
    通讯作者:

    李春阳,博士,讲师,硕士生导师,研究方向为电力电缆及其附件用聚合物绝缘材料 E-mail: lichunyang_hust@163.com

  • 中图分类号: TM215.2;TB332

Formulation and properties of UV crosslinked low voltage ethylene propylene diene monomer cable insulation material

  • 摘要: 为了将具有更高效率、更低功耗的紫外光交联技术用于三元乙丙橡胶(EPDM)电缆绝缘层生产,以达到节能减排、高效生产的目标,需研发低固体填料配方体系的EPDM绝缘材料。本文分别通过添加线性低密度聚乙烯(LLDPE)和少量纳米SiO2两种方法对EPDM进行补强。设计了可光交联的EPDM绝缘材料配方,并系统研究了紫外光交联EPDM材料的力学性能、交联性能、电学性能。结果表明,随着辐照时间的延长,EPDM力学性能明显下降,交联度迅速上升。与EPDM相比,LLDPE/EPDM材料交联程度和力学性能明显升高,当LLDPE含量为10wt%时,LLDPE/EPDM材料断裂伸长率为539%,拉伸强度为12 MPa,邵氏硬度为80 A,可以满足使用要求。对于SiO2/EPDM材料,当SiO2含量为4%(与橡胶的质量比,下同)时,力学性能最优,断裂伸长率为596%,拉伸强度为14 MPa。与EPDM相比,SiO2/EPDM复合材料的硬度变化不大,但交联程度降低,当辐照时间为12 s时,延伸率为40%,但仍可满足使用要求。添加0.5%抗氧剂1010可以抑制材料辐照交联过程中的降解,复合材料的力学性能大幅度提升,同时可以为EPDM绝缘材料提供较好的耐热老化性能。两种适用于紫外光交联技术的EPDM电缆绝缘材料均可满足电缆绝缘使用要求。其中,LLDPE补强材料的交联度和电学性能更优,但是对材料的硬度影响较大,而SiO2对复合材料的硬度几乎没有影响,但是交联度与电学性能略有下降。

     

  • 图  1  西林电桥电路图

    Figure  1.  Circuit diagram of West Linn Bridge

    RX—Sample resistance; CX—Sample capacitance; R4—Fixed resistance; CN—Standard capacitance; R3—Adjustable resistance; C4—Adjustable capacitance; AC—AC power supply; T—AC transformer; ${{\dot{I}}_{1}} $—Sample arm current; ${{\dot{I}}_{2}} $—Bridge arm current of standard capacitor;P—Balance indicator; A, B, C, D—Node A, B, C, D

    图  2  EPDM在不同辐照时间下力学性能

    Figure  2.  Mechanical properties of EPDM under different irradiation time

    图  3  LLDPE/EPDM复合材料力学性能

    Figure  3.  Mechanical properties of LLDPE/EPDM composites

    图  4  LLDPE/EPDM复合材料硬度

    Figure  4.  Hardness of LLDPE/EPDM composites

    图  5  SiO2/EPDM复合材料力学性能

    Figure  5.  Mechanical properties of SiO2/EPDM composites

    图  6  SiO2/EPDM复合材料的SEM图像

    Figure  6.  SEM images of SiO2/EPDM composites

    图  7  SiO2/EPDM复合材料硬度

    Figure  7.  Hardness of SiO2/EPDM composites

    图  8  添加抗氧剂后各EPDM材料力学性能

    Figure  8.  Mechanical properties of each EPDM material after adding antioxidant

    图  9  老化前后各EPDM材料力学性能

    Figure  9.  Mechanical properties of each EPDM material before and after aging

    图  10  老化后EPDM颜色对比

    Figure  10.  Color contrast of EPDM after aging

    图  11  老化前后EPDM凝胶含量

    Figure  11.  EPDM gel content before and after aging

    图  12  添加1010后复合材料力学性能

    Figure  12.  Mechanical properties of compound material after adding 1010

    图  13  紫外光交联低压EPDM材料介电性能

    Figure  13.  Dielectric properties of UV crosslinked low voltage EPDM materials

    εr—Relative permittivity

    图  14  紫外光交联低压EPDM材料交流击穿场强Weibull分布

    Figure  14.  Weibull distribution of AC breakdown field strength of UV crosslinked low voltage EPDM materials

    表  1  三元乙丙橡胶(EPDM)电缆绝缘复合材料配比

    Table  1.   Ratio of ethylene propylene diene monomer (EPDM) cable insulation composite materials g

    MaterialEPDMLLDPENano SiO2BPTAIC
    10wt%LLDPE/EPDM36400.80.4
    20wt%LLDPE/EPDM32800.80.4
    30wt%LLDPE/EPDM281200.80.4
    40wt%LLDPE/EPDM241600.80.4
    2%SiO2/EPDM4000.80.80.4
    4%SiO2/EPDM4001.60.80.4
    6%SiO2/EPDM4002.40.80.4
    EPDM40000.80.4
    Notes: LLDPE—Linear low density polyethylene; BP—Benzophenone; TAIC—Triallyl isocyanurate ester.
    下载: 导出CSV

    表  2  低压EPDM绝缘材料的性能要求

    Table  2.   Performance requirements for low voltage EPDM insulating materials

    ProjectStandard requirements
    Tensile strength before aging/MPa≥5.0
    Elongation at break before aging/%≥250
    Thermal oxygen aging test:
    Tensile strength after aging/MPa≥4.2
    Maximum change rate of tensile strength/%±25
    Elongation at break after aging/%200
    Maximum change rate of elongation at break/%±25
    Thermal elongation/%≤100
    Permanent elongation/%≤25
    Shore hardness/A≤84
    Loss factor tanδ≤0.04
    Dielectric constant
    Breakdown strength/(kV·mm−1)≥25
    下载: 导出CSV

    表  3  EPDM在不同辐照时间下热延伸率

    Table  3.   Thermal elongation of EPDM under different irradiation time

    Irradiation
    time/s
    Thermal elongation/%Permanent elongation/%
    4Fuse
    8850
    12250
    下载: 导出CSV

    表  4  10wt%LLDPE/EPDM复合材料热延伸率

    Table  4.   Thermal elongation of 10wt%LLDPE/EPDM composites

    Irradiation
    time/s
    Thermal elongation/%Permanent elongation/%
    4Fuse
    8350
    12200
    下载: 导出CSV

    表  5  SiO2/EPDM材料热延伸率

    Table  5.   Thermal elongation of SiO2/EPDM composites

    Mass ratio of nano SiO2/%Thermal elongation/%Permanent elongation/%
    0250
    2350
    4400
    6400
    下载: 导出CSV

    表  6  EPDM材料抗氧剂配比与热延伸测试结果

    Table  6.   Test results of antioxidant ratio and thermal extension of EPDM materials

    Sample nameAntioxidant content/%Thermal elongation/%Permanent elongation/%
    4020/EPDM0.5Fuse
    300*/EPDM0.511030
    300/EPDM0.3 45 0
    1010/EPDM0.5 35 0
    1035/EPDM0.5 35 0
    Notes: 4020—Antioxidant 4020; 300—Antioxidant 300; 1010—Antioxidant 1010; 1035—Antioxidant 1035.
    下载: 导出CSV
  • [1] 王启丰, 王强, 潘龙, 等. 低压橡皮电缆用CM/EPDM绝缘配方研究[J]. 电线电缆, 2015(5):24-27. doi: 10.3969/j.issn.1672-6901.2015.05.007

    WANG Qifeng, WANG Qiang, PAN Long, et al. Research of CM/EPDM insulating cement formulation for low-tension rubber cable[J]. Wire and Cable,2015(5):24-27(in Chinese). doi: 10.3969/j.issn.1672-6901.2015.05.007
    [2] ZUIDEMA C, KEGERISE W, FLEMING R, et al. A short history of rubber cables[J]. IEEE Electrical Insulation Magazine,2011,27(4):45-50. doi: 10.1109/MEI.2011.5954068
    [3] 林晨, 吝伶艳, 雷志鹏, 等. 基于 PDC的多应力老化乙丙橡胶电缆绝缘状态评估[J]. 绝缘材料, 2020, 53(1):70-75.

    LIN Chen, LIN Lingyan, LEI Zhipeng, et al. State evaluation of multi-stress aged EPR cable insulation based on PDC[J]. Insulating materials,2020,53(1):70-75(in Chinese).
    [4] 李冬梅. 橡皮绝缘电缆产品技术及制造工艺[M]. 北京: 力学工业出版社, 2017.

    LI Dongmei. Rubber insulated cable product technology and manufacturing process[M]. Beijing: Machinery Industry Press, 2017(in Chinese).
    [5] CHEN J, HUANG W, JIANG S B, et al. Flame-retardant EPDM compounds containing phenanthrene to enhance radiation resistance[J]. Radiation Physics & Chemistry,2016,130(1):400-405.
    [6] 李晨晨, 李培军. 煅烧陶土在三元乙丙橡胶电线电缆胶料中的应用[J]. 橡胶科技, 2019, 17(3):168-172.

    LI Chenchen, LI Peijun. Application of calcined clay in EPDM wire and cable compound[J]. Rubber Science and Technology,2019,17(3):168-172(in Chinese).
    [7] 郭尚振. EPDM/ZDMA复合材料的制备、结构与性能的表征[D]. 青岛: 青岛科技大学, 2016.

    GUO Shangzhen. The preparation and characterization of EPDM/ZDMA materials[D]. Qingdao: Qingdao University of Science and Technology, 2016(in Chinese).
    [8] 万明顺, 信晓庆. 无机填料对过氧化物硫化EPDM性能的影响[J]. 特种橡胶制品, 2018, 39(6):28-30.

    WAN Mingshun, XIN Xiaoqing. Effect of inorganic fillers on the properties of peroxide vulcanized EPDM[J]. Special Purpose Rubber Products,2018,39(6):28-30(in Chinese).
    [9] 陈伟. 紫外光交联聚合物的研究[D]. 合肥: 合肥工业大学, 2014.

    CHEN Wei. Studies on UV-photocrosslinking of polymers[D]. Hefei: Hefei University of Technology, 2014(in Chinese).
    [10] 马宝红, 鲍文波, 姜国发, 等. 紫外光交联对低烟无卤阻燃电缆绝缘材料性能的影响[J]. 中国塑料, 2017, 31(6):95-99.

    MA Baohong, BAO Wenbo, JIANG Guofa, et al. Influence of UV crosslinking on properties of insulation materials used for low-smoke halongen-free flame-retardant cables[J]. China Plastics,2017,31(6):95-99(in Chinese).
    [11] QU B J, BAO W B, WU Q H, et al. Recent devolpments on photoinitiated crosslinking of polyethylene and its applications for manufacturing insulated wire and cable[C]. 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials. Harbin, 2009: 33-36.
    [12] WU Q, QU B. Photoinitiating characteristics of benzophenone derivatives as new initiators in the photocrosslinking of polyethylene[J]. Polymer Engineering and Science,2001,41(7):1220-1226. doi: 10.1002/pen.10823
    [13] 郑宁来. 2019年全球热塑弹性体(TPE)需求将达到6700 kt[J]. 橡胶参考资料, 2016, 46(4): 45.

    ZHENG N L. The global demand for thermoplastic elastomer (TPE) will reach 6700 kt in 2019[J]. Rubber Reference, 2016, 46(4): 45(in Chinese).
    [14] 程实, 胡凌骁, 丁玉梅, 等. PP/EPDM/滑石粉微孔发泡复合材料的制备和性能[J]. 塑料, 2014, 43(5):75-77, 74.

    CHENG Shi, HU Lingxiao, DING Yumei, et al. Preparation and properties of PP/EPDM/Talc microporous foam composites[J]. Plastics,2014,43(5):75-77, 74(in Chinese).
    [15] 宋旭鹏. 三元乙丙橡胶/无机填料共混物的紫外光光交联及其阻燃材料的研究[D]. 合肥: 中国科学技术大学, 2009.

    SONG Xupeng. Study on ultraviolet light crosslinking and flame retardant materials of EPDM/inorganic filler blends[D]. Hefei: University of Science and Technology of China, 2009(in Chinese).
    [16] 林文莉. 线性低密度聚乙烯及其紫外光辐照交联材料老化特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2017.

    LIN Wenli. Study on aging characteristics of linear low density polyethylene and its UV irradiated crosslinked materials[D]. Harbin: Harbin University of Science and Technology, 2017(in Chinese).
    [17] 荆彦宽. 功能性乙丙橡胶/SiO2复合材料的合成[D]. 大连: 大连理工大学, 2019.

    JING Yankuan. Functional ethylene propylene rubber/SiO2 synthesis of composites[D]. Dalian: Dalian University of Technology, 2019(in Chinese).
    [18] 吴来利, 周志宇, 徐华胜, 等. 中低压电缆用乙丙橡胶绝缘材料配方设计概述[J]. 光纤与电缆及其应用技术, 2021(3):6-9, 14.

    WU Laili, ZHOU Zhiyu, XU Huasheng, et al. Summary of formulation design of EPR insulation material for medium and low voltage cables[J]. Optical Fiber & Electric Cable and Their Applications,2021(3):6-9, 14(in Chinese).
    [19] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度实验方法第一部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermmoplastic—Determination of indentation hardness—Part 1: Duromerer method (Shore hardness): GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [20] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [21] 中国国家标准化管理委员会. 电缆和光缆绝缘和护套材料通用实验方法: GB/T 2951—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Common test methods for insulating and sheathing materials of electric and optical cables: GB/T 2951—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [22] 郭红霞. 电线电缆材料[M]. 北京: 力学工业出版社 , 2012.

    GUO Hongxia. Wire and cable materials[M]. Beijing: China Machine Press, 2012(in Chinese).
    [23] PLANES E, CHAZEAU L, VIGIER G, et al. Influence of fillres on mechanical properties of ATH filled EPDM during ageing by gamma irradiation[J]. Polymer Degradation and Stability,2010,95(6):1029-1038. doi: 10.1016/j.polymdegradstab.2010.03.008
    [24] DELPRAT P, DUTEURTRE X, et al. Photooxidation of unstabilized and HALS-stabilized polyphasic ethylene-propylene polymers[J]. Porymer Degradation and Stability,1995,50(1):1-12. doi: 10.1016/0141-3910(95)00061-P
    [25] MARCO R, IVAN P, LUIGI T, et al. Thermal and ablation properties of EPDM based heat shielding materials modified with density reducer fillers[J]. Composites Part A: Applied Science and Manufacturing,2018,112:71-80. doi: 10.1016/j.compositesa.2018.05.031
    [26] 刘标, 党智敏, 张冬丽, 等. 绝缘电缆用LDPE/EPDM复合材料力学性能及电性能研究[J]. 绝缘材料, 2019, 52(9):36-41.

    LIU Biao, DANG Zhimin, ZHANG Dongli, et al. Mechanical and electrical properties of LDPE/EPDM for insulated cable[J]. Insulating Materials,2019,52(9):36-41(in Chinese).
    [27] GIUSEPPE A, GUIDO R, MICHELE V. Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement[J]. Progress in Polymer Science,2008,33:683-731. doi: 10.1016/j.progpolymsci.2008.02.003
    [28] 刘丰, 郑秋红, 李小红, 等. 可分散性纳米二氧化硅增强硅橡胶[J]. 复合材料学报, 2006, 23(6):57-63. doi: 10.3321/j.issn:1000-3851.2006.06.009

    LIU Feng, ZHENG Qiuhong, LI Xiaohong, et al. Silicone rubber reinforced by a dispersible nano-silica[J]. Acta Materiae Compositae Sinica,2006,23(6):57-63(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.06.009
    [29] 张扬. 二氧化钛/聚氨酯紫外光屏蔽涂层的制备[D]. 上海: 复旦大学, 2009.

    ZHANG Yang. The preparation of titania/polyurethane UV blocking coatings[D]. Shanghai: Fudan University, 2019(in Chinese).
    [30] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡热空气加速老化和耐热试验: GB/T 3512—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic—Accelerated aging and heat resistance test—Air-over method: GB/T 3251—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [31] 王猛. 微纳米SiO2/LDPE复合电介质空间电荷与直流电性能的研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    WANG Meng. Study on space charge characteristics and DC electrical properties of SiO2/LDPE micro-nanocompo-sites[D]. Harbin: Harbin University of Science and Technology, 2021(in Chinese).
    [32] WANG Y, QIN D Y, XU Z Q, et al. The effect of loading ratios and electric field on charge dynamics in silica-based polyethylene nanocomposites[J]. Journal of Physics D: Applied Physics,2018,51(39):395302. doi: 10.1088/1361-6463/aad7e8
    [33] WANG W, MIN D, LI S. Understanding the conduction and breakdown properties of polyethylene nanodielectrics: Effect of deep traps[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(1):564-572. doi: 10.1109/TDEI.2015.004823
    [34] 熊雨琪. 纳米SiO2填充硅橡胶的微观分散性表征及其补强机理研究[D]. 绵阳: 西南科技大学, 2021.

    XIONG Yuqi. Characterization of micro dispersion and reinforcement mechanism of nano-SiO2 filled silicone rubber[D]. Mianyang: Southwest University of Science and Technology, 2021(in Chinese).
    [35] TAGHAVIMEHR M, FAMILI M H N, SHIRSAVAR M A. Effect of nanoparticle network formation on electromagnetic properties and cell morphology of microcellular polymer nanocomposite foams[J]. Polymer Testing,2020,86:106469. doi: 10.1016/j.polymertesting.2020.106469
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  892
  • HTML全文浏览量:  533
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2021-11-26
  • 录用日期:  2021-12-02
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回