留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变角度缠绕成型复合材料传动轴的扭转特性及其失效机制

余木火 施涵 余许多 戚亮亮 闵伟 孙泽玉

余木火, 施涵, 余许多, 等. 变角度缠绕成型复合材料传动轴的扭转特性及其失效机制[J]. 复合材料学报, 2022, 39(12): 6042-6053. doi: 10.13801/j.cnki.fhclxb.20211228.003
引用本文: 余木火, 施涵, 余许多, 等. 变角度缠绕成型复合材料传动轴的扭转特性及其失效机制[J]. 复合材料学报, 2022, 39(12): 6042-6053. doi: 10.13801/j.cnki.fhclxb.20211228.003
YU Muhuo, SHI Han, YU Xuduo, et al. Torsional characteristics and failure mechanism of composite drive shafts formed by variable-angle winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6042-6053. doi: 10.13801/j.cnki.fhclxb.20211228.003
Citation: YU Muhuo, SHI Han, YU Xuduo, et al. Torsional characteristics and failure mechanism of composite drive shafts formed by variable-angle winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6042-6053. doi: 10.13801/j.cnki.fhclxb.20211228.003

变角度缠绕成型复合材料传动轴的扭转特性及其失效机制

doi: 10.13801/j.cnki.fhclxb.20211228.003
基金项目: 上海市“科技创新行动计划”高新技术领域项目(19511106601;19511106703);中央高校基本科研业务费专项资金(2232020G-12);国家新材料生产与应用示范平台建设项目(CLPT-2019-0016)
详细信息
    通讯作者:

    孙泽玉,博士,讲师,硕士生导师,研究方向为先进复合材料高效低成本成型及其在汽车轻量化中的应用 E-mail: sunzeyu@dhu.edu.cn

  • 中图分类号: TB332;V214.8

Torsional characteristics and failure mechanism of composite drive shafts formed by variable-angle winding

  • 摘要: 基于非测地线缠绕和纤维滑移理论,提出采用非测地线缠绕成型一体化复合材料传动轴。设计了多组不同比例纤维变角度过渡区复合材料传动轴,并利用有限元分析和扭转实验深入研究了传动轴的扭转性能及其失效机制。结果表明,含有的变角度过渡区比例越大,传动轴扭转性能越好,过渡区从20%提高到80%,传动轴的失效载荷提高111%,峰值载荷提高90.7%。随着过渡区占比的提高,屈曲形变导致的损伤失效得到有效缓解,损伤扩展角度降低了54.5%。结合有限元仿真和扭转实验分析可知,过渡区纤维角度的增加抑制了屈曲形变,减少了分层损伤带来的界面上力学传导失效,提高了轴管承载能力。

     

  • 图  1  复合材料传动轴结构

    Figure  1.  Structure of composite drive shaft

    图  2  传统复合材料传动轴中的返回区

    Figure  2.  Return region in traditional composite drive shaft

    图  3  缠绕过程中返回区中的丝束移动

    Figure  3.  Movement of the tow at return region during the winding process

    图  4  复合材料传动轴过渡区示意图

    Figure  4.  Schematic diagram of composite drive shaft with transition zone

    图  5  非测地线缠绕实现缠绕角度变化

    Figure  5.  Non-geodesic method to realize variable angle winding

    图  6  缠绕制备复合材料传动轴

    Figure  6.  Filament winding process of composite drive shaft

    图  7  复合材料传动轴过渡区设计

    Figure  7.  Design of transition zone of composite drive shaft

    图  8  含过渡区的变角度缠绕复合材料轴管的角度-轴向距离关系曲线

    Figure  8.  Angle-axial distance relationship curve of variable-angle winding composite tube with transition zone

    图  9  复合材料传动轴装配图

    Figure  9.  Composite drive shaft assembly drawing

    图  10  复合材料传动轴有限元(FEA)模型

    Figure  10.  Model of finite element analysis (FEA) of composite drive shaft

    U1—Translational degrees of freedom in the X direction; U2—Translational degrees of freedom in the Y direction; U3—Translational degrees of freedom in the Z direction; UR1—Rotational degrees of freedom in the X direction; UR2—Rotation degrees of freedom in the Y direction; UR3—Rotational degrees of freedom in the Z direction

    图  11  不同过渡区占比的复合材料传动轴扭矩-角度关系

    Figure  11.  Torque-twisting angle relations of composite drive shaft with different proportions of transition zone

    图  12  不同过渡区占比的复合材料传动轴初始损伤载荷和失效载荷

    Figure  12.  Initial damage load and failure load of composite drive shaft with different proportions of transition zone

    图  13  不同过渡区占比的复合材料传动轴扭转损伤扩展角度及其占比

    Figure  13.  Torsional damage propagation angle and percentage of composite drive shaft with different proportions of transition zone

    图  14  复合材料传动轴FEA及试验扭转破坏对比(a)、复合材料轴管扭转屈曲的第一模态[10] (b)

    Figure  14.  Comparison of torsion failure of composite drive shaft between FEA and experiment (a), the first mode of torsional buckling of the composite tube[10] (b)

    图  15  复合材料传动轴样品横截面的扭转失效

    Figure  15.  Torsional damage of composite drive shaft sample at middle cross-section

    图  16  含过渡区的变角度缠绕复合材料轴管扭矩-角度曲线

    Figure  16.  Torque-angle curve of variable-angle winding composite tube with transition zone

    T—Torque; R—Torsional stress changes from non-uniform to uniform node; O—Initial point; Q—Damage initial node; P—Inflection point of rate of declinet; θ—Torsion angle

    图  17  样品A的FEA结果:(a) Q点;(b) P点

    Figure  17.  FEA results of sample A: (a) Point Q; (b) Point P

    图  18  不同过渡区占比复合材料传动轴管的扭转失效与FEA

    Figure  18.  Torsional failure and FEA of composite shaft with different transition zones

    图  19  Q点的损伤初始角的FEA值和实验值

    Figure  19.  FEA value and experimental value of the damage initial angle at Q point

    表  1  不同缠绕工艺参数的变角度缠绕稳定性

    Table  1.   Variable-angle winding stability of different parameters in filament winding process

    Winding angle/(°)55453525155

    Proportion/%
    20××
    40×
    60×
    80
    Interval angle/(°)10××××
    7×××
    5××
    3×
    2
    1
    Initial angle/(°)65××
    70×
    75××
    80×××
    Notes: □—Without slip; ×—Slip.
    下载: 导出CSV

    表  2  实验变量设置

    Table  2.   Setting of variable in the experiments

    SamplePly anglesProportion/%Thickness/mm
    A[±25°]4202.20
    B402.25
    C602.29
    D802.25
    下载: 导出CSV

    表  3  T700SC 12K碳纤维/BAC-172环氧树脂复合材料的FEA参数

    Table  3.   FEA parameters of T700SC 12K carbon fiber/BAC-172 epoxy resin composites

    ParameterValue
    Xt, Yt/MPa1632, 34
    E1t, E2t /GPa123, 7.8
    υ12, υ130.27
    υ230.42
    Xc, Yc/MPa704, 68
    G12/GPa3.8
    G13, G23/GPa5.0
    τ12/MPa55
    τ13, τ23/MPa80
    Notes: E1t, E2t—Tensile elastic modulus; υ12, υ13, υ23—Poisson’s ratio; G12, G13, G23—Shear modulus; Xt—Longitudinal tensile strength; Xc—Longitudinal compressive strength; Yt—Transverse tensile strength; Yc—Transverse compressive strength; τ12—Longitudinal shear strength; τ12, τ13—Transverse shear strength.
    下载: 导出CSV
  • [1] QI L, LI C, YU X, et al. Effect of reinforced fibers on the vibration characteristics of fibers reinforced composite shaft tubes with metal flanges[J]. Composite Structures,2021,275:114460. doi: 10.1016/j.compstruct.2021.114460
    [2] SUN Z, XIAO J, YU X, et al. Vibration characteristics of carbon-fiber reinforced composite drive shafts fabricated using filament winding technology[J]. Composite Structures,2020,241:111725. doi: 10.1016/j.compstruct.2019.111725
    [3] ZU L, KOUSSIOS S, BEUKERS A. A novel design solution for improving the performance of composite toroidal hydrogen storage tanks[J]. International Journal of Hydrogen Energy,2012,37(19):14343-14350. doi: 10.1016/j.ijhydene.2012.07.009
    [4] 矫维成, 王荣国, 刘文博, 等. 缠绕纤维与芯模表面间滑线系数的测量表征[J]. 复合材料学报, 2012, 29(3):191-196.

    JIAO Weicheng, WANG Rongguo, LIU Wenbo, et al. Measurement of slippage coefficient between fiber and mandrel surface for non-geodesic filament winding[J]. Acta Materiae Compositae Sinica,2012,29(3):191-196(in Chinese).
    [5] ZU L, XU H, WANG H, et al. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures,2019,207:41-52. doi: 10.1016/j.compstruct.2018.09.007
    [6] DALIBOR I H, LISBÔA T V, MARCZAK R J, et al. A geometric approach for filament winding pattern generation and study of the influence of the slippage coefficient[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(12):576. doi: 10.1007/s40430-019-2083-2
    [7] FU J, YUN J, JUNG Y, et al. Generation of filament-winding paths for complex axisymmetric shapes based on the principal stress field[J]. Composite Structures,2017,161:330-339. doi: 10.1016/j.compstruct.2016.11.022
    [8] ZHANG B, XU H, ZU L, et al. Design of filament-wound composite elbows based on non-geodesic trajectories[J]. Composite Structures,2018,189:635-640. doi: 10.1016/j.compstruct.2018.02.008
    [9] PARK H C, CHO C, CHOI Y. Torsional buckling analysis of composite cylinders[J]. AIAA Journal,2001,39(5):951-955. doi: 10.2514/2.1400
    [10] SHOKRIEH M M, HASANI A, LESSARD L B. Shear buckling of a composite drive shaft under torsion[J]. Composite Structures,2004,64(1):63-69. doi: 10.1016/S0263-8223(03)00214-9
    [11] SHEN H S, XIANG Y. Buckling and postbuckling of anisotropic laminated cylindrical shells under combined axial compression and torsion[J]. Composite Structures,2008,84(4):375-386. doi: 10.1016/j.compstruct.2007.10.002
    [12] 闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3):781-787.

    YAN Guang, HAN Xiaojin, YAN Chuliang, et al. Buckling analysis of composite cylindrical shell under axial compression load[J]. Acta Materiae Compositae Sinica,2014,31(3):781-787(in Chinese).
    [13] 胡晶, 李晓星, 张天敏, 等. 碳纤维复合材料传动轴承扭性能优化设计[J]. 复合材料学报, 2009, 26(6):177-181. doi: 10.3321/j.issn:1000-3851.2009.06.030

    HU Jing, LI Xiaoxing, ZHANG Tianmin, et al. Design optimization on torsion prosion property of carbon-fiber composite drive shaft[J]. Acta Materiae Compositae Sinica,2009,26(6):177-181(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.030
    [14] MINAK G, ABRATE S, GHELLI D, et al. Residual torsional strength after impact of CFRP tubes[J]. Composites Part B: Engineering,2010,41(8):637-645. doi: 10.1016/j.compositesb.2010.09.021
    [15] BADIE M A, MAHDI E, HAMOUDA A M S. An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft[J]. Materials & Design,2011,32(3):1485-1500.
    [16] SEVKAT E, TUMER H, HALIDUN KELESTEMUR M, et al. Effect of torsional strain-rate and lay-up sequences on the performance of hybrid composite shafts[J]. Materials & Design,2014,60:310-319. doi: 10.1016/j.matdes.2014.03.069
    [17] TARIQ M, NISAR S, SHAH A, et al. Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(4):198-206. doi: 10.1007/s40430-018-1099-3
    [18] HAO W, HUANG Z, ZHANG L, et al. Study on the torsion behavior of 3-D braided composite shafts[J]. Composite Structures,2019,229:111384. doi: 10.1016/j.compstruct.2019.111384
    [19] ARMANFARD A, MELENKA G W. Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension-torsion loading[J]. Composite Structures,2021,269:114049. doi: 10.1016/j.compstruct.2021.114049
    [20] MAHDY W M, ZHAO L, LIU F, et al. Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads[J]. Composite Structures,2021,255:112977. doi: 10.1016/j.compstruct.2020.112977
    [21] 高洪平, 孙泽玉, 陶雷, 等. 复合材料模量对汽车传动轴固有频率的影响[J]. 复合材料科学与工程, 2018(5):58-63.

    GAO Hongping, SUN Zeyu, TAO Lei, et al. Effect of fiber modulus on natural frequency of composite automobile drive shaft[J]. Composites Science and Engineering,2018(5):58-63(in Chinese).
    [22] 孙泽玉, 余许多, 陶雷, 等. 不同内径碳纤维复合材料轴管的振动性能研究[J]. 复合材料科学与工程, 2020(5):63-68. doi: 10.3969/j.issn.1003-0999.2020.05.009

    SUN Zeyu, YU Xuduo, TAO Lei, et al. Study on vibration properties of carbon fiber reinforced composite tubes with different inner diameters[J]. Composite Science and Engineering,2020(5):63-68(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.05.009
    [23] YE J, CHU C, CAI H, et al. A multi-scale model for studying failure mechanisms of composite wind turbine blades[J]. Composite Structures,2019,212:220-229. doi: 10.1016/j.compstruct.2019.01.031
    [24] CHRISTENSEN R M. Tensor transformations and failure criteria for the analysis of fiber composite materials[J]. Journal of Composite Materials, 1988, 22(9): 874-897.
    [25] CHRISTENSEN R M. Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results[J]. Composites Science and Technology, 2019, 182: 107718.
    [26] GU J, CHEN P. Some modifications of Hashin’s failure criteria for unidirectional composite materials [J]. Composite Structures, 2017, 182: 143-152.
    [27] MACEDO R, FERREIRA R, GUEDES J M, et al. Intraply failure criterion for unidirectional fiber reinforced compo-sites by means of asymptotic homogenization[J]. Compo-site Structures, 2017, 159: 335-349.
    [28] MURTY A V K, NAIK G N, GOPALAKRISHNAN S. Towards a rational failure criterion for unidirectional composite laminae[J]. Mechanics of Advanced Materials and Structures, 2005, 12(2): 147-157.
    [29] ZHAO H W, LIU X G, KENT A. Mechanical properties research of carbon fiber composite laminates [J]. Materials Science Forum, 2020, 980: 107-116.
    [30] 宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11): 3586-3600.

    SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3586-3600(in Chinese).
    [31] 孙伟, 关志东, 黎增山, 等 纤维增强复合材料薄壁圆管扭转失效分析[J]. 复合材料学报, 2016, 33(10): 2187-2196.

    SUN Wei, GUANG Zhidong, LI Zengshan, et al. Failure analysis of fiber reinforced composite thin walled tubes under torsion load [J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2187-2196(in Chinese).
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  1238
  • HTML全文浏览量:  499
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-12-15
  • 录用日期:  2021-12-16
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回