Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating
-
摘要: 为得到轻便的高吸湿材料,制备席夫碱(Schiff)复合涂层对基体材料亲水改性以提高吸湿性能。利用戊二醛(GA)作为中间体共价连接氨基化纳米二氧化硅(SiO2)和亲水物质2-[(2-氨基乙基)氨基]乙磺酸钠(AAS)制得席夫碱复合材料(SiO2-NH2-GA-AAS),将其分散在壳聚糖(CS)溶液中制得SiO2-NH2-GA-AAS / CS复合涂层。以高分子材料聚对苯二甲酸乙二酯醇(PET)作为基材,采用浸渍的方法将复合涂层涂覆在其表面进行改性。采用FTIR、场发射扫描电子显微镜配备能谱仪(FESEM-EDS)和接触角测量仪对涂覆复合涂层后的PET基材的微观形貌、元素分布及表面润湿性进行表征分析,并对吸附过程进行伪一级、伪二级动力学模型拟合。结果表明:当SiO2-NH2/AAS质量比为1∶2,SiO2-NH2-GA-AAS用量为10wt%时,改性后的PET基材吸湿性能最佳。FESEM-EDS显示改性后的PET基材表面较均匀地附着复合涂层且含有Schiff复合材料的特征元素,同时接触角从原始的135°变为0°,达到了超亲水效果。在25℃、97%相对湿度(RH)环境下,最优复合涂层改性后的PET基材在经过45 h吸湿后达到平衡,吸湿率高达36.94%,吸湿性能得到了极大的提高,整个吸附过程符合伪二级动力学模型。Abstract: To get lightweight, highly hygroscopic materials, Schiff base composite coating was prepared to hydrophilically modify the matrix material to improve the hygroscopic performance. Glutaraldehyde (GA) as an intermediate was used to covalently link aminated nano-silica (SiO2) and the hydrophilic substance 2-[(2-aminoethyl)amino] ethanesulfonate sodium (AAS) to prepare Schiff base composite material (SiO2-NH2-GA-AAS), and then the SiO2-NH2-GA-AAS / CS composite coating was prepared by dispersing it in chitosan (CS) solution. The polymer polyethylene terephthalate alcohol (PET) was used as the base material, and the composite coating was coated on its surface by dipping to modify it. FTIR, field emission scanning electron microscope equipped with energy dispersive spectrometer (FESEM-EDS) and contact angle measuring instrument were used to test the microscopic morphology, element distribution and surface wettability of the PET substrate coated with composite coating. The adsorption process was fitted with Pseudo-first-order and Pseudo-second-order kinetic models. The results show the modified PET substrate has the best hygroscopic performance when mass ratio of SiO2-NH2/AAS is 1∶2 and the amount of SiO2-NH2-GA-AAS is 10wt%. From the FESEM-EDS analysis, it can be seen that the surface of the modified PET substrate is coated with a uniform composite material, and the contact angle changes from the original 135° to 0°, achieving the super-hydrophilic effect. In the environment of 25℃, 97% relative humidity (RH), the PET substrate coated with the optimum composite coating reaches moisture saturation after 45 h of moisture absorption which reaches 36.94% moisture content. The moisture absorption performance has been extremely improved. The whole adsorption process conforms to the Pseudo-second-order kinetic model.
-
Key words:
- Schiff base /
- hydrophilic /
- moisture absorption /
- composite coating /
- adsorption kinetics
-
表 1 不同SiO2-NH2/2-[(2-氨基乙基)氨基]乙磺酸钠(AAS)质量比下的SiO2-NH2-戊二醛(GA)-AAS复合材料配方
Table 1. SiO2-NH2-glutaraldehyde (GA)-2-[(2-aminoethyl)amino] ethanesulfonate sodium (AAS) composite material formulations under different mass ratio of SiO2-NH2/AAS
Sample
numberMass ratio of SiO2-NH2/AAS SiO2-NH2/g AAS/g GA/g SiO2-NH2-GA-AAS0.125 4∶1 0.5 0.125 0.0657 SiO2-NH2-GA-AAS0.25 2∶1 0.5 0.25 0.1315 SiO2-NH2-GA-AAS0.5 1∶1 0.5 0.5 0.2631 SiO2-NH2-GA-AAS1.0 1∶2 0.5 1 0.5263 SiO2-NH2-GA-AAS2.0 1∶4 0.5 2 1.0527 表 2 改性后PET基材表面元素含量
Table 2. Surface element content of modified PET
Element C O Si S Na Mass fraction/wt% 46.11 45.52 7.04 1.17 0.16 -
[1] JIN S X, YU Q F, LI M, et al. Quantitative evaluation of carbon materials for humidity buffering in a novel dehumidification shutter system powered by solar energy[J]. Building and Environment,2021,194:107714. doi: 10.1016/j.buildenv.2021.107714 [2] CONSEIL-GUDLA H, JELLESEN M S, AMBAT R. Humidity control in electronic devices: water sorption properties of desiccants and related humidity build-up in enclosures[J]. IEEE Transactionson Components, Packaging and Manufacturing Technology,2021,11(2):324-332. doi: 10.1109/TCPMT.2020.3045495 [3] LI K, LUO W, TSAI B, et al. Performance analysis of two-stage solid desiccant densely coated heat exchangers[J]. Sustainability,2020,12(18):7357. doi: 10.3390/su12187357 [4] 孟维丹, 赵景丽, 王娇娜, 等. PAA/PVA复合纳米纤维膜的制备与吸湿性能研究[J]. 北京服装学院学报(自然科学版), 2022, 42(1):8-14.MENG W D, ZHAO J L, WANG Q N, et al. Proparation and properties of PAA/PVA composite nanofiber dryer[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition),2022,42(1):8-14(in Chinese). [5] FANG Y, SUN W, LIU H, et al. Construction of eco-friendly flame retardant and dripping-resistant coating on polyester fabrics[J]. Surface Engineering,2021,37(8):1067-1073. doi: 10.1080/02670844.2021.1911458 [6] DONG W, QIAN F P, LI Q, et al. Fabrication of superhydrophobic PET filter material with fluorinated SiO2 nanoparticles via simple sol-gel process[J]. Journal of Sol-Gel Science and Technology,2021,98(1):224-237. doi: 10.1007/s10971-021-05483-4 [7] PARK S J, KO T, YOON J, et al. Highly adhesive and high fatigue resistant copper/PET flexible electronic substrates[J]. Applied Surface Science,2018,427:1-9. [8] 丁蕊蕊, 潘均安, 阳范文, 等. PET薄膜的亲水改性研究[J]. 表面技术, 2023, 52(4): 374-380.DING R R, PAN J A, YANG F W, et al. Study on hydrophilic modification of PET film[J]. Surface Technology, 2023, 52(4): 374-380(in Chinese). [9] 陈彬霞, 周泽航, 卢灿辉. 等离子体辐照亲水改性再生聚酯纤维及其结构演变[J]. 高分子材料科学与工程, 2022, 38(1):43-49.CHEN B X, ZHOU Z H, LU C H. Hydrophilic modification and structure evolution of atmospheric plasma treated recycled ester fiber[J]. Polymer Materials Science & Engi-neering,2022,38(1):43-49(in Chinese). [10] ZHANG W, LI J, TANG R, et al. Hydrophilic and antibacterial surface functionalization of polyamide fabric by coating with polylysine biomolecule[J]. Progress in Organic Coatings,2020,142:105571. doi: 10.1016/j.porgcoat.2020.105571 [11] XU Q, JI X, TIAN J, et al. Inner surface hydrophilic modification of PVDF membrane with tea polyphenols/silica composite coating[J]. Polymers,2021,13(23):4186. doi: 10.3390/polym13234186 [12] SHOKOUHIAN M, SOLOUKI S. p-Phenylenediamine grafted multi-walled carbon nanotubes as a hydrophilic modifier in thin-film nanocomposite membrane[J]. Polymer Bulletin,2020,77(7):3485-3498. doi: 10.1007/s00289-019-02899-5 [13] PICCININI F, LEVI M, TURRI S. Photoactive sol-gel hybrid coatings from modified fluorocarbon polymers and amorphous titania[J]. Progress in Organic Coatings,2013,76(9):1265-1272. doi: 10.1016/j.porgcoat.2013.03.026 [14] MANDAL A, SARKAR A, ADHIKA-RY A, et al. Structure and synthesis of copper based Schiff base and reduced Schiff base complexes: A combined experimental and theoretical investigation of biomimetic catalytic activity[J]. Dalton Transactions,2020,49(43):15461-15472. doi: 10.1039/D0DT02784G [15] KARGAR H, MOGHADAM M, SHARIATI L, et al. Synthesis, crystal structure, spectral characterization, theoretical studies, and investigation of catalytic activity in selective oxidation of sulfides by oxoperoxotungsten (VI) Schiff base complex[J]. Journal of Molecular Structure,2022,1257:132608. doi: 10.1016/j.molstruc.2022.132608 [16] DEMIR R, KAYA I. Humidity properties of Schiff base polymers[J]. Open Chemistry,2018,16(1):937-943. doi: 10.1515/chem-2018-0106 [17] REN L, YANG Z, HUANG L, et al. Macroscopic poly Schiff base-coated bacteria cellulose with high adsorption performance[J]. Polymers,2020,12(3):714. doi: 10.3390/polym12030714 [18] SANG Y, CAO Y, WANG L, et al. Nrich porous organic polymers based on Schiff base reaction for CO2 capture and mercury (II) adsorption[J]. Journal of Colloid and Interface Science,2021,587:121-130. doi: 10.1016/j.jcis.2020.12.002 [19] WANG X, HUANG W, FU L, et al. Preparation of superhydrophilic/underwater superoleophobic membranes for separateing oil-in-water emulsion: Mechanism, progress and perspective[J]. Journal of Coatings Technology and Research,2021,18(2):285-310. doi: 10.1007/s11998-020-00428-y [20] 董文杰, 阚泽. 聚氨基酸修饰的纳米二氧化硅的制备及在尼龙改性中的应用[J]. 高分子材料科学与工程, 2018, 34(10): 110-115.DONG W J, KAN Z. Preparation of poly(amino acid) modified nanosilicaand its application in nylon modification[J]. Polymer Materials Science and Engineering, 2018, 34(10): 110-115(in Chinese). [21] 贾新利, 罗健辉, 王平美, 等. 具有双亲特性的水相哑铃型SiO2纳米粒子的制备[J]. 无机化学学报, 2021, 37(4):653-660.JIA X L, LUO J H, WANG P M, et al. Synthesis of dumbbell-like SiO2 nano particles with amphiphilic propertyes inaqueous phase[J]. Chinese Journal of Inorganic Chemistry,2021,37(4):653-660(in Chinese). [22] KABIR A, DUNLOP M J, ACHARYA B, et al. Water recycling efficacies of extremely hygroscopic, antifouling hydrogels[J]. RSC Advances,2018,8(66):38100-38107. doi: 10.1039/C8RA07915C [23] 杨淼, 郭亚萍, 李静, 等. 磺酸基修饰氧化石墨烯/聚偏氟乙烯复合膜的抗污性能研究[J/OL]. 膜科学与技术: 1-10[2023-04-03]. https://kns.cnki.net/kcms/detail/ 62.1049.tb.20220520.1407.002.html.YANG M, GUO Y P, LI J, et al. Antifouling property of sulfonic acid group modified graphene oxide/polyvinylidene fluoride composite membrane[J/OL]. Membrane Science and Technology: 1-10[2023-04-03]. https://kns.cnki.net/kcms/detail/ 62.1049.tb.20220520.1407.002.html(in Chinese). [24] 梁涛. 有机及有机/无机杂化超亲水涂层的制备、性能及应用[D]. 广州: 华南理工大学, 2017.LIANG T. Fabrication, properties and application of orga-nic and organic-inorganic hybrid superhydrophilic coating[D]. Guangzhou: South China University of Technology, 2017(in Chinese). [25] 王为政, 袁坚, 李昌钦, 等. 喷涂法制备耐磨超疏水玻璃[J]. 硅酸盐学报, 2022, 50(4):929-936. doi: 10.14062/j.issn.0454-5648.20211005WANG W Z, YUAN J, LI C Q, et al. Wear resistance of superhydrophobic glass by spraying method[J]. Journal of the Chinese Ceramic Society,2022,50(4):929-936(in Chinese). doi: 10.14062/j.issn.0454-5648.20211005 [26] 李晴, 钱付平, 薛沚怡, 等. 改性SiO2凝胶涂层滤料制备与性能[J]. 复合材料学报, 2021, 38(8):2489-2496.LI Q, QIAN F P, XUE Z Y, et al. Study on preparation and performance of modified SiO2 gel coating filter material[J]. Acta Materiae Compositae Sinica,2021,38(8):2489-2496(in Chinese). -