留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

醛基化透明质酸/羟丙基壳聚糖自愈合水凝胶的制备与性能

王艺璇 曲萌菲 张杭 李征征

王艺璇, 曲萌菲, 张杭, 等. 醛基化透明质酸/羟丙基壳聚糖自愈合水凝胶的制备与性能[J]. 复合材料学报, 2023, 40(10): 5885-5892. doi: 10.13801/j.cnki.fhclxb.20230207.001
引用本文: 王艺璇, 曲萌菲, 张杭, 等. 醛基化透明质酸/羟丙基壳聚糖自愈合水凝胶的制备与性能[J]. 复合材料学报, 2023, 40(10): 5885-5892. doi: 10.13801/j.cnki.fhclxb.20230207.001
WANG Yixuan, QU Mengfei, ZHANG Hang, et al. Preparation and properties of oxidized hyaluronic acid-hydroxypropyl chitosan self-healing hydrogel[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5885-5892. doi: 10.13801/j.cnki.fhclxb.20230207.001
Citation: WANG Yixuan, QU Mengfei, ZHANG Hang, et al. Preparation and properties of oxidized hyaluronic acid-hydroxypropyl chitosan self-healing hydrogel[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5885-5892. doi: 10.13801/j.cnki.fhclxb.20230207.001

醛基化透明质酸/羟丙基壳聚糖自愈合水凝胶的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230207.001
基金项目: 天津市海洋资源与化学重点实验室(201706);2018年度天津市教委科研计划项目(2018KJ110);天津市制浆造纸重点实验室开放基金资助项目(201809)
详细信息
    通讯作者:

    李征征,博士,副研究员,硕士生导师,研究方向为智能高分子水凝胶及其生物医用研究 E-mail: li.z.z@tust.edu.cn

  • 中图分类号: O63;TB332

Preparation and properties of oxidized hyaluronic acid-hydroxypropyl chitosan self-healing hydrogel

Funds: Tianjin Key Laboratory of Marine Resources and Chemistry (201706); 2018 Tianjin Education Commission Scientific Research Program Project (2018KJ110); Tianjin Key Laboratory of Pulp and Paper Open Fund Project (201809)
  • 摘要: 本文通过使用高碘酸钠将透明质酸(HA)上的羟基氧化为醛基,合成醛基化透明质酸(OHA)。以OHA和羟丙基壳聚糖(HPCS)为原料,通过OHA上的醛基与HPCS的氨基发生席夫碱反应生成动态亚胺键,制备了OHA/HPCS自愈合水凝胶。本文通过使用FTIR、UV-vis、SEM、流变和1H NMR对OHA/HPCS自愈合水凝胶的微观形貌与性能进行表征与探究。OHA/HPCS水凝胶具有多孔结构,孔径范围在70~200 μm之间。随着OHA用量的增加,OHA/HPCS水凝胶内部的孔隙增多,孔径变小,OHA/HPCS的溶胀比逐渐变小,且降解速率变缓。在室温且无外界刺激的条件下,OHA/HPCS水凝胶在4 h内能够实现自愈合。OHA/HPCS水凝胶能够缓慢释放抗癌药物吉西他滨,药物累计释放率为70%~84%,释放时间为12天。OHA/HPCS水凝胶具有缓慢释放吉西他滨的性能,表明OHA/HPCS水凝胶在药物释放领域具有潜在的应用前景。

     

  • 图  1  OHA/HPCS自愈合水凝胶合成路线示意图

    Figure  1.  Schematic diagram of OHA/HPCS self-healing hydrogels synthesis route

    图  2  透明质酸(HA)和OHA的红外图谱

    Figure  2.  FTIR spectra of hyaluronic acid (HA) and OHA

    图  3  HPCS、HA、OHA和OHA/HPCS水凝胶的红外图谱

    Figure  3.  FTIR spectra of HPCS, HA, OHA and OHA/HPCS hydrogels

    图  4  OHA和HA的核磁共振氢谱图

    Figure  4.  1H NMR spectra of OHA and HA

    图  5  OHA1/HPCS (a)、OHA2/HPCS (b)和OHA3/HPCS (c)水凝胶的SEM图像

    Figure  5.  SEM images of OHA1/HPCS (a), OHA2/HPCS (b) and OHA3/HPCS (c) hydrogels

    图  6  OHA/HPCS水凝胶自愈合图示

    Figure  6.  Self-healing diagram of OHA/HPCS hydrogels

    图  7  OHA/HPCS 水凝胶的黏弹性能:储能模量G'和损耗模量G''随应变变化曲线

    Figure  7.  Viscoelastic properties of OHA/HPCS hydrogels: Storage modulus G' and loss modulus G" curves with strain

    图  8  OHA/HPCS自愈合水凝胶的溶胀性能曲线

    Figure  8.  Swelling performance curves of OHA/HPCS self-healing hydrogels

    图  9  OHA/HPCS水凝胶的体外降解

    Figure  9.  In vitro degradation of OHA/HPCS hydrogels

    图  10  OHA/HPCS自愈合水凝胶的药物释放曲线

    Figure  10.  Drug release curves of OHA/HPCS self-healing hydrogels

    表  1  醛基化透明质酸(OHA)/羟丙基壳聚糖(HPCS)水凝胶的实验配比

    Table  1.   Experimental ratio of oxidized hyaluronic acid (OHA)/hydroxypropyl chitosan (HPCS) hydrogel

    SampleOHA/gHPCS/gPBS/mL
    OHA1/HPCS0.030.071
    OHA2/HPCS0.050.071
    OHA3/HPCS0.070.071
    Note: PBS—Phosphate buffered saline.
    下载: 导出CSV
  • [1] 吴维, 吴迪, 马珊珊, 等. 水凝胶在生物医学领域的研究进展[J]. 口腔医学, 2022, 42(9):831-837.

    WU Wei, WU Di, MA Shanshan, et al. Research progress of hydrogels in biomedicine[J]. Stomatology,2022,42(9):831-837(in Chinese).
    [2] BONETTI L, DE NARDO L, VARIOLA F, et al. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels[J]. Soft Matter,2020,16(24):5577-5587. doi: 10.1039/D0SM00269K
    [3] DENG Z X, WANG H, MA P X, et al. Self-healing conductive hydrogels: Preparation, properties and applications[J]. Nanoscale,2020,12(3):1224-1246. doi: 10.1039/C9NR09283H
    [4] 刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展[J]. 轻工学报, 2021, 36(6):110-124.

    LIU Ruixue, CHEN Jichao, LI Yingbo. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction[J]. Journal of Light Industry,2021,36(6):110-124(in Chinese).
    [5] XU X Y, ZENG Z S, HUANG Z Q, et al. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy[J]. Carbohydrate Polymers,2020,229:115394. doi: 10.1016/j.carbpol.2019.115394
    [6] 彭灿, 刘宇洁. 自愈合水凝胶的合成及在药物制剂中的应用进展[J]. 高分子通报, 2021(3):6-12.

    PENG Can, LIU Yujie. Synthesis of self-healing hydrogel and application in pharmaceutical[J]. Chinese Polymer Bulletin,2021(3):6-12(in Chinese).
    [7] LI Y, YANG H Y, LEE D S. Advances in biodegradable and injectable hydrogels for biomedical applications[J]. Journal of Controlled Release,2021,330:151-160. doi: 10.1016/j.jconrel.2020.12.008
    [8] GAO H C, YU C X, LI Q T, et al. Injectable DMEM-induced phenylboronic acid-modified hyaluronic acid self-crosslinking hydrogel for potential applications in tissue repair[J]. Carbohydrate Polymers,2021,258:117663. doi: 10.1016/j.carbpol.2021.117663
    [9] SHI L Y, DING P H, WANG Y Z, et al. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: Design, fabrication, and biomedical applications[J]. Macromolecular Rapid Communications,2019,40(7):1800837. doi: 10.1002/marc.201800837
    [10] QIAN Z Y, ZHAO N Y, WANG C Y, et al. Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer[J]. Journal of Materials Science & Technology,2022,127:245-255.
    [11] FENG W J, WANG Z K. Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing[J]. Carbohydrate Polymers,2022,294:119824. doi: 10.1016/j.carbpol.2022.119824
    [12] 王通, 王广飞, 张淑敏, 等. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 182-190.

    WANG Tong, WANG Guangfei, ZHANG Shumin, et al. Research progress of hydrogel wound dressing based on natural polysaccharides[J]. Materials Reports, 2022, 36(6): 182-190(in Chinese).
    [13] SHARMA G, THAKUR B, NAUSHAD M, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection[J]. Environmental Chemistry Letters,2018,16(1):113-146. doi: 10.1007/s10311-017-0671-x
    [14] CHEN F M, LIU X H. Advancing biomaterials of human origin for tissue engineering[J]. Progress in Polymer Science,2016,53:86-168. doi: 10.1016/j.progpolymsci.2015.02.004
    [15] LIMA-SOUSA R, DE MELO-DIOGO D, ALVES C G, et al. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy[J]. Carbohydrate Polymers,2018,200:93-99. doi: 10.1016/j.carbpol.2018.07.066
    [16] BROWN T E, ANSETH K S. Spatiotemporal hydrogel biomaterials for regenerative medicine[J]. Chemical Society Reviews,2017,46(21):6532-6552. doi: 10.1039/C7CS00445A
    [17] 候冰娜, 倪凯, 沈慧玲, 等. 自修复氧化海藻酸钠-羧甲基壳聚糖水凝胶的制备及药物缓释性能[J]. 复合材料学报, 2022, 39(1):250-257.

    HOU Bingna, NI Kai, SHEN Huiling, et al. Preparation of self-healing oxidized sodium alginate-carboxymethyl chitosan hydrogel for sustained drug release[J]. Acta Materiae Compositae Sinica,2022,39(1):250-257(in Chinese).
    [18] 王鹏博, 张永勤, 吕兴霜, 等. 羟丙基壳聚糖的制备及应用研究进展[J]. 化工新型材料, 2020, 48(8):37-41.

    WANG Pengbo, ZHANG Yongqin, LYU Xingshuang, et al. Recent development of hydroxypropyl chitosan for its preparation and application[J]. New Chemical Materials,2020,48(8):37-41(in Chinese).
    [19] NGUYEN N T P, NGUYEN L V H, TRAN N M P, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid[J]. Materials Science and Engineering: C,2019,103:109670. doi: 10.1016/j.msec.2019.04.049
    [20] FANG Y, SHI L L, DUAN Z L, et al. Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: A review[J]. International Journal of Biological Macromolecules,2021,189:554-566. doi: 10.1016/j.ijbiomac.2021.08.140
    [21] LI S Z, PEI M J, WAN T T, et al. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials[J]. Carbohydrate Polymers,2020,250:116922. doi: 10.1016/j.carbpol.2020.116922
    [22] YU Y F, YANG B, TIAN D L, et al. Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing[J]. Carbohydrate Polymers,2022,288:119334. doi: 10.1016/j.carbpol.2022.119334
    [23] ZHANG S, KANG L, HU S, et al. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease[J]. International Journal of Biological Macromolecules,2020,167:1598-1612.
    [24] WANG S, CHI J, JIANG Z, et al. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute[J]. Carbohydrate Polymers,2021,256:117519. doi: 10.1016/j.carbpol.2020.117519
    [25] WANG Y M, WANG J, YUAN Z Y, et al. Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism[J]. Colloids and Surfaces B: Biointerfaces,2017,152:252-259. doi: 10.1016/j.colsurfb.2017.01.008
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1687
  • HTML全文浏览量:  862
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-01-17
  • 录用日期:  2023-01-18
  • 网络出版日期:  2023-02-08
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回