Preparation and properties of oxidized hyaluronic acid-hydroxypropyl chitosan self-healing hydrogel
-
摘要:
目的 近年来,研究人员对自愈合水凝胶在生物医学工程领域如生物组织工程支架及药物载体等领域进行了广泛研究。透明质酸 (HA) 和羟丙基壳聚糖 (HPCS) 因具有良好的生物可降解性和生物相容性等优点在生物医药领域备受关注。本文通过将HA进行氧化改性,以醛基化透明质酸 (OHA) 和HPCS为原料,制备OHA/HPCS自愈合水凝胶。 方法 以透明质酸 (HA) 和羟丙基壳聚糖(HPCS) 为原料,通过对透明质酸进行改性,制备了醛基化透明质酸 (OHA)。以OHA和HPCS为原料,利用醛基和氨基形成席夫碱的反应,OHA上的醛基与HPCS的氨基发生反应,生成动态亚胺键,制备了OHA/HPCS自愈合水凝胶。通过傅里叶变换红外光谱 (FT-IR) 和核磁共振氢谱 (H NMR) 表征OHA/HPCS自愈合水凝胶的结构并考察了OHA和HPCS的用量对OHA/HPCS水凝胶的微观形态、粘弹性、溶胀性能、自愈合性能和药物释放性能的影响。 结果 (1) OHA的红外谱图在1730 cm出现醛基的特征峰,证明OHA制备成功。在3000~3750 cm和2930 cm处分别对应—OH (羟基) 和—CH— (次甲基) 伸缩振动,在1657cm处为HPCS的羰基峰。在1730cm处醛基的特征峰消失,1640cm处为C=N伸缩振动峰,表明OHA的醛基与HPCS的氨基发生席夫碱反应生成亚胺键,说明OHA/HPCS水凝胶制备成功。(2) 在OHA的核磁共振氢谱图中,4.9~5.0 ppm 处出现新的化学位移,这表明由OHA上的醛基与相邻羟基形成半缩醛质子,说明OHA制备成功。(3) OHA/HPCS水凝胶孔隙与孔隙之间相互贯通。OHA/HPCS水凝胶的孔径范围在70~200 μm之间。由于OHA的浓度增大,交联度增大,同时OHA/HPCS水凝胶中聚合物的质量分数增加,OHA/HPCS水凝胶的内部三维空间的孔隙结构变小。 (4)对OHA/HPCS水凝胶进行拉伸,发现拼接处未发生断裂,表明OHA/HPCS水凝胶的断裂面在拼接后产生化学反应,进一步证明OHA/HPCS水凝胶可以实现自愈合。(5) OHA/HPCS水凝胶的均大于,表明OHA/HPCS水凝胶具有良好的弹性。由于随着OHA的用量增加,醛基与氨基所形成的亚胺键数量增多,交联密度增大,OHA/HPCS水凝胶逐渐增大,OHA/HPCS水凝胶的弹性逐渐提高。表明OHA的用量能够影响OHA/HPCS水凝胶的弹性。(6) OHA/HPCS水凝胶具备一定程度的吸水和储水能力。OHA/HPCS水凝胶最大溶胀比为29~35。随着OHA用量增加,OHA/HPCS水凝胶的最大溶胀比呈现逐渐减小的趋势。(7) OHA/HPCS水凝胶能够被溶菌酶所降解。提高OHA的用量,醛基数量增加,生成的动态亚胺键增多,提高了交联程度,并增加了OHA/HPCS水凝胶内部的空间位阻效应,延长降解时间。 (8) OHA/HPCS水凝胶对吉西他滨具有缓慢释放的作用。OHA/HPCS水凝胶对吉西他滨的药物释放率达到70%~84%,释放时间为12天。随着OHA的用量增大,吉西他滨分子链上的氨基与OHA的醛基可能存在一定的席夫碱反应,吉西他滨与OHA之间发生反应性吸收, OHA/HPCS水凝胶的交联度增大阻碍分子链运动,使得药物释放受到阻碍,释放速率减小。OHA/HPCS水凝胶内外环境的药物浓度差逐渐缩小直至平衡,药物释放速率逐渐趋缓直至平衡。 结论 (1) 通过氧化透明质酸 (HA) 制备醛基化透明质酸 (OHA) ,以OHA和羟丙基壳聚糖 (HPCS) 为原料,通过席夫碱的生成反应,制备具有动态亚胺键的OHA/HPCS水凝胶。(2) 通过控制OHA的用量,OHA/HPCS水凝胶在无外界条件刺激的作用下4 h可实现自愈合。OHA/HPCS水凝胶具有多孔结构且孔隙之间相互贯通的特点,孔径范围在70~200 μm之间。OHA/HPCS水凝胶在30 min达到溶胀平衡,溶胀比为25~29。(3) OHA/HPCS水凝胶对吉西他滨的药物释放率达到70%~84%,释放时间为12天。因此OHA/HPCS水凝胶具有缓慢释放吉西他滨的性能,OHA/HPCS水凝胶在药物递送领域具有较好的应用前景。 Abstract: In this paper, oxidized hyaluronic acid (OHA) was synthesized by oxidizing hydroxyl groups on hyaluronic acid (HA) with sodium periodate. OHA/HPCS self-healing hydrogel was prepared by using OHA and hydroxypropyl chitosan (HPCS) as raw materials. The aldehyde group on OHA reacted with the amino group of HPCS to form dynamic imine bond through Schiff base reaction. In this paper, the microscopic morphology and properties of OHA/HPCS self-healing hydrogel was characterized by Fourier Transform infrared spectroscopy (FT-IR), UV-Vis spectrophotometer (UV-Vis), scanning electron microscopy (SEM), rheology and 1H NMR. OHA/HPCS hydrogels have a porous structure, and the results showed that the pore size ranged from 70 to 200 μm by changing the amount of OHA. With the increase of the dosage of OHA, the pores in the OHA/HPCS hydrogels increased, the pore size became smaller, the swelling ratio of OHA/HPCS became smaller, and the degradation rate became slower. OHA/HPCS hydrogel could self-heal within 4 h at room temperature without external stimulation. OHA/HPCS hydrogel can release anticancer drug of gemcitabine in sustained way, with a cumulative release percent of 70%-84% in 12 days. OHA/HPCS hydrogels have the properties of sustained release gemcitabine, indicating that OHA/HPCS hydrogels have potential application prospects in the field of drug release.-
Key words:
- oxidized hyaluronic acid /
- hydroxypropyl chitosan /
- self-healing /
- hydrogels /
- sustained drug release
-
表 1 OHA/HPCS水凝胶的实验配比
Table 1. Experimental ratio of OHA/HPCS hydrogel
Samples OHA/g HPCS/g PBS/mL OHA1/HPCS 0.03 0.07 1 OHA2/HPCS 0.05 0.07 1 OHA3/HPCS 0.07 0.07 1 -
[1] 吴维, 吴迪, 马珊珊, 等. 水凝胶在生物医学领域的研究进展[J]. 口腔医学, 2022, 42(9):831-837.WU W, WU D, MA S S, et al. Research progress of hydrogels in biomedicine[J]. Stomatology,2022,42(9):831-837(in Chinese). [2] BONETTI L, NARDO L D, VARIOLA F, et al. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels[J]. Soft Matter,2020,16(24):5577-5587. doi: 10.1039/D0SM00269K [3] DENG Z, WANG H, MA P X, et al. Self-healing conductive hydrogels: preparation, properties and applications[J]. Nanoscale,2020,12(3):1224-1246. doi: 10.1039/C9NR09283H [4] 刘瑞雪, 陈纪超, 李迎博. 基于动态共价键和非共价键相互作用的自愈合水凝胶研究进展[J]. 轻工学报, 2021, 36(6):110-124.LIU R X, CHEN J C, LI Y B. Research progress of self-healing hydrogels based on dynamic covalent bond and non-covalent bond interaction[J]. Journal of Light Industry,2021,36(6):110-124(in Chinese). [5] XU X, ZENG Z, HUANG Z, et al. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy[J]. Carbohydrate Polymers,2020,229:115394. doi: 10.1016/j.carbpol.2019.115394 [6] 彭灿, 刘宇洁. 自愈合水凝胶的合成及在药物制剂中的应用进展[J]. 高分子通报, 2021(3):6-12.PENG C, LIU Y J. Synthesis of Self-healing Hydrogel and Application in Pharmaceutical[J]. Chinese Journal of Polymer Science,2021(3):6-12(in Chinese). [7] LI Y, YANG H Y, LEE D S. Advances in biodegradable and injectable hydrogels for biomedical applications[J]. Journal of Controlled Release,2021,330:151-160. doi: 10.1016/j.jconrel.2020.12.008 [8] GAO H, YU C, LI Q, et al. Injectable DMEM-induced phenylboronic acid-modified hyaluronic acid self-crosslinking hydrogel for potential applications in tissue repair[J]. Carbohydrate Polymers,2021,258:117663. doi: 10.1016/j.carbpol.2021.117663 [9] SHI L, DING P, WANG Y, et al. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications[J]. Macromolecular rapid communications,2019,40(7):1800837. doi: 10.1002/marc.201800837 [10] QIAN Z, ZHAO N, WANG C, et al. Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer[J]. Journal of Materials Science & Technology,2022,127:245-255. [11] FENG W, WANG Z. Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing[J]. Carbohydrate Polymers,2022,294:119824. doi: 10.1016/j.carbpol.2022.119824 [12] 王通, 王广飞, 张淑敏, 等. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36 (06): 182-190.WANG T, WANG G F, ZHANG S M, et al. Research Progress of Hydrogel Wound Dressing Based on Natural Polysaccharides [J]. Materials Review, 222, 36 (06): 182-190 (in Chinese). [13] SHARMA G, THAKUR B, NAUSHAD M, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection[J]. Environmental Chemistry Letters,2018,16(1):113-146. doi: 10.1007/s10311-017-0671-x [14] CHEN F M, LIU X. Advancing biomaterials of human origin for tissue engineering[J]. Progress in Polymer Science,2016,53:86-168. doi: 10.1016/j.progpolymsci.2015.02.004 [15] LIMA-SOUSA R, DE MELO-DIOGO D, ALVES C G, et al. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy[J]. Carbohydrate polymers,2018,200:93-99. doi: 10.1016/j.carbpol.2018.07.066 [16] BROWN T E, ANSETH K S. Spatiotemporal hydrogel biomaterials for regenerative medicine[J]. Chemical Society Reviews,2017,46(21):6532-6552. doi: 10.1039/C7CS00445A [17] 候冰娜, 倪凯, 沈慧玲, 等. 自修复氧化海藻酸钠-羧甲基壳聚糖水凝胶的制备及药物缓释性能[J]. 复合材料学报, 2022, 39(1):250-257.HOU B N, NI K, SHEN H L, et al. Preparation of self-healing oxidized sodium alginate-carboxymethyl chitosan hydrogel for sustained drug release[J]. Acta Materiae Compositae Sinica,2022,39(1):250-257(in Chinese). [18] 王鹏博, 张永勤, 吕兴霜, 等. 羟丙基壳聚糖的制备及应用研究进展[J]. 化工新型材料, 2020, 48(8):37-41.WANG P B, ZHANG Y Q, LV X S, et al. Recent development of hydroxypropyl chitosan for its preparation and application[J]. New Chemical Materials,2020,48(8):37-41(in Chinese). [19] NGUYEN T P, NGUYEN V H, TRAN M P, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid[J]. Materials Science and Engineering:C,2019,103:109670. doi: 10.1016/j.msec.2019.04.049 [20] YU F, et al. Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: A review[J]. International Journal of Biological Macromolecules,2021,189:554-566. doi: 10.1016/j.ijbiomac.2021.08.140 [21] LI S, PEI M, WAN T, et al. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials[J]. Carbohydrate polymers,2020,250:116922. doi: 10.1016/j.carbpol.2020.116922 [22] YU Y, YANG B, TIAN D, et al. Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing[J]. Carbohydrate Polymers,2022,288:119334. doi: 10.1016/j.carbpol.2022.119334 [23] ZHANG S, KANG L, HU S, et al. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease[J]. International Journal of Biological Macromolecules,2020,167:1598-1612. [24] WANG S, CHI J, JIANG Z, et al. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute[J]. Carbohydrate Polymers,2021,256:117519. doi: 10.1016/j.carbpol.2020.117519 [25] WANG Y, WANG J, YUAN Z, et al. Chitosan cross-linked poly (acrylic acid) hydrogels: Drug release control and mechanism[J]. Colloids and Surfaces, B. Biointerfaces,2017,152:252-259. doi: 10.1016/j.colsurfb.2017.01.008 -

计量
- 文章访问数: 464
- HTML全文浏览量: 235
- 被引次数: 0