留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混杂纤维增强砂浆高温后单轴受压本构关系

李黎 陶佳诚 曹明莉 李宗利

李黎, 陶佳诚, 曹明莉, 等. 混杂纤维增强砂浆高温后单轴受压本构关系[J]. 复合材料学报, 2022, 39(11): 5375-5385. doi: 10.13801/j.cnki.fhclxb.20211222.001
引用本文: 李黎, 陶佳诚, 曹明莉, 等. 混杂纤维增强砂浆高温后单轴受压本构关系[J]. 复合材料学报, 2022, 39(11): 5375-5385. doi: 10.13801/j.cnki.fhclxb.20211222.001
LI Li, TAO Jiacheng, CAO Mingli, et al. Constitutive relation of uniaxial compression of hybrid fiber reinforced mortar after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5375-5385. doi: 10.13801/j.cnki.fhclxb.20211222.001
Citation: LI Li, TAO Jiacheng, CAO Mingli, et al. Constitutive relation of uniaxial compression of hybrid fiber reinforced mortar after high temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5375-5385. doi: 10.13801/j.cnki.fhclxb.20211222.001

混杂纤维增强砂浆高温后单轴受压本构关系

doi: 10.13801/j.cnki.fhclxb.20211222.001
基金项目: 陕西省自然科学基础研究计划项目(2021JQ-174);中央高校基本科研业务费专项(2452020054);国家自然科学基金(52109168);国家重点研发计划(2017YFC0405101)
详细信息
    通讯作者:

    李宗利,博士,教授,博士生导师,研究方向为混凝土材料与结构 E-mail: bene@nwsuaf.edu.cn

  • 中图分类号: TB332

Constitutive relation of uniaxial compression of hybrid fiber reinforced mortar after high temperature

  • 摘要: 为建立高温和CaCO3晶须(CW)影响下混杂纤维增强砂浆(HyFRM)的单轴受压本构关系,对不同CW掺量的钢-聚乙烯醇(PVA) HyFRM开展25℃、200℃、400℃、500℃、800℃、900℃六个温度水平的单轴受压性能试验。结果表明:随钢-PVA混杂纤维的引入,高温后砂浆的轴压峰值应力显著提高;随CW的引入,轴压峰值应力进一步提高:800℃以下,1.5vol%钢纤维+0.5vol%PVA纤维+2vol%CW的HyFRM轴压峰值应力均为最优。随温度升高,轴压应力-应变曲线由陡峭趋于扁平,HyFRM轴压峰值应力、弹性模量、应变能总体下降。但500℃以下下降缓慢,甚至还有所提高,以1.5vol%钢纤维+0.5vol%PVA纤维+2vol%CW的HyFRM提高最为明显;800℃及以上,受压性能则急剧劣化。建立了考虑温度和CW掺量的HyFRM受压应力-应变损伤本构模型。损伤本构模型和损伤变量不仅可以较好地体现出多尺度纤维体系在砂浆单轴受压破坏的不同阶段多尺度阻裂、延缓砂浆损伤扩展的作用,而且可以反映高温对砂浆初始损伤的影响。光学显微镜和SEM观测揭示了高温对HyFRM轴压性能的影响机制。

     

  • 图  1  石英砂的筛分曲线

    Figure  1.  Grading curve of silica sand

    图  2  HyFRM高温后轴压峰值应力

    Figure  2.  Compressive peak stress of HyFRM after elevated temperature

    图  3  HyFRM高温后轴压应力-应变曲线

    Figure  3.  Compressive stress-strain curves of heated HyFRM after elevated temperature

    图  4  HyFRM高温后轴压应变能

    Figure  4.  Compressive strain energy of HyFRM after elevated temperature

    图  5  高温后HyFRM归一化轴压应力-应变实测曲线与理论曲线

    Figure  5.  Experimental and analytical normalized stress-strain curves of HyFRM after high temperatures

    图  6  不同温度后HyFRM损伤变量D

    Figure  6.  Damage variable D of HyFRM expose to different temperatures

    图  7  高温后不同配比HyFRM损伤变量D

    Figure  7.  Damage variable D of heated HyFRM with various fiber mixures after high temperatures

    图  8  HyFRM中水化产物微观结构的SEM图像

    Figure  8.  SEM images of microstructures of hydration products in HyFRM

    图  9  光学显微镜下HyFRM高温后的微观结构

    Figure  9.  Microstructures of HyFRM after high temperatures under optical microscope

    图  10  HyFRM高温后微观结构的SEM图像

    Figure  10.  SEM images of microstructures for HyFRM after high temperatures

    表  1  混杂纤维增强砂浆(HyFRM)原材料的基本性能

    Table  1.   Properties of raw materials of hybrid fiber reinforced mortar (HyFRM)

    Raw
    materials
    SizeMechanical property
    CementSpecific surface
    area 356 m2/kg
    28 days cement mortar strength 46.5 MPa
    Fly ash45 μm sieve residue 23.72wt%
    Silica sandFineness modulus
    1.9 media sand
    Moh’s hardness 7
    Steel fiberLength 13 mm
    Diameter 200 μm
    Tensile strength ≥2 GPa
    Elastic modulus 200-210 GPa
    PVA fiberLength 6 mm
    Diameter 31 μm
    Tensile strength 1.1 GPa
    Elastic modulus 41 GPa
    CWLength 20-30 μm
    Diameter 0.5-2 μm
    Tensile strength 3-6 GPa
    Elastic modulus 410–710 GPa
    Notes: PVA—Polyvinyl alcohol; CW—CaCO3 whisker.
    下载: 导出CSV

    表  2  HyFRM的配合比

    Table  2.   Mix ratios of HyFRM kg/m3

    GroupSteel fiberPVA fiberCWBinderWaterSand
    M00.000.01220366610
    1SF-0.5PVA/M1176.450.01196359598
    1SF-0.5PVA-1CW/M1176.4528.61183355592
    1SF-0.5PVA-2CW/M1176.4557.21171351586
    Notes: M—Mortar; SF—Steel fiber.
    下载: 导出CSV

    表  3  高温后HyFRM的孔隙率

    Table  3.   Porosity of HyFRM after high temperatures

    GroupTemperature/℃Porosity 2-5000 nm/%Porosity <50 nm/%Porosity ≥50 nm/%
    1SF-0.5PVA/M2515.3010.324.98
    1SF-0.5PVA-2CW/M2516.5912.484.11
    1SF-0.5PVA-2CW/M20017.1011.665.34
    1SF-0.5PVA-2CW/M40016.8611.615.25
    1SF-0.5PVA-2CW/M90024.924.9919.93
    下载: 导出CSV
  • [1] 肖建庄, 刘良林, 董毓利, 等. 高性能混凝土高温爆裂研究进展[J]. 建筑科学与工程学报, 2019, 36(3):1-15. doi: 10.3969/j.issn.1673-2049.2019.03.001

    XIAO Jianzhuang, LIU Lianglin, DONG Yuli, et al. Progress of study on explosive spalling of high performance concrete at elevated temperatures[J]. Journal of Architecture and Civil Engineering,2019,36(3):1-15(in Chinese). doi: 10.3969/j.issn.1673-2049.2019.03.001
    [2] POON C S, SHUI Z H, LAM L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures[J]. Cement and Concrete Research,2004,34(12):2215-2222. doi: 10.1016/j.cemconres.2004.02.011
    [3] XU L, HUANG L, CHI Y, et al. Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete[J]. ACI Materials Journal,2016,113(2):219-229.
    [4] PENG G, YANG W, ZHAO J, et al. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures[J]. Cement and Concrete Research,2006,36(4):723-727. doi: 10.1016/j.cemconres.2005.12.014
    [5] 李黎, 曹明莉. 纤维增强水泥基复合材料的纤维混杂效应研究进展[J]. 应用基础与工程科学学报, 2018, 26(4):843-853.

    LI Li, CAO Mingli. Research progress on fiber hybrid effect in fiber reinforced cementitious composite[J]. Journal of Basic Science and Engineering,2018,26(4):843-853(in Chinese).
    [6] ABADEL A, ABBAS H, ALMUSALLAM T, et al. Mechanical properties of hybrid fibre-reinforced concrete—Analytical modelling and experimental behaviour[J]. Magazine of Concrete Research,2016,68(16):823-843. doi: 10.1680/jmacr.15.00276
    [7] DING Y, ZHANG C, CAO M, et al. Influence of different fibers on the change of pore pressure of self-consolidating concrete exposed to fire[J]. Construction and Building Materials,2016,113:456-469. doi: 10.1016/j.conbuildmat.2016.03.070
    [8] BANTHIA N, SOLEIMANI S M. Flexural response of hybrid fiber-reinforced cementitious composites[J]. ACI Materials Journal,2005,6(102):382-389.
    [9] CAO M, XU L, ZHANG C. Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar[J]. Composites Part A: Applied Science and Manufacturing,2016,90:662-669. doi: 10.1016/j.compositesa.2016.08.033
    [10] LI L, GAO D, LI Z, et al. Effect of high temperature on morphologies of fibers and mechanical properties of multi-scale fiber reinforced cement-based composites[J]. Construction and Building Materials,2020,261:120487. doi: 10.1016/j.conbuildmat.2020.120487
    [11] CAO M, XIE C, GUAN J. Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers[J]. Compo-sites Part A: Applied Science and Manufacturing,2019,120:172-187. doi: 10.1016/j.compositesa.2019.03.002
    [12] LI L, CAO M, MING X, et al. Microstructure of calcium carbonate whisker reinforced cement paste after elevated temperature exposure[J]. Construction and Building Materials,2019,227:116609. doi: 10.1016/j.conbuildmat.2019.07.335
    [13] 高丹盈, 赵亮平, 陈刚. 高温中纤维纳米混凝土单轴受压应力-应变关系[J]. 土木工程学报, 2017, 50(9):46-58.

    GAO Danying, ZHAO Liangping, CHEN Gang. Compres-sive stress-strain relationship of fiber and nanosized material reinforced concrete in high temperature[J]. China Civil Engineering Journal,2017,50(9):46-58(in Chinese).
    [14] 张文华, 张仔祥, 刘鹏宇, 等. 多尺度纤维增强超高性能混凝土的轴心抗拉和抗压行为[J]. 硅酸盐学报, 2020, 48(8):1-13.

    ZHANG Wenhua, ZHANG Zixiang, LIU Pengyu, et al. Uniaxial tensile and compressive stress-strain behavior of multi-scale fiber-reinforced ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2020,48(8):1-13(in Chinese).
    [15] 曹明莉, 李黎, 李志文, 等. CaCO3晶须对钢-聚乙烯醇混杂纤维增强水泥基复合材料板弯曲性能的影响[J]. 复合材料学报, 2017, 34(11):2614-2623.

    CAO Mingli, LI Li, LI Zhiwen, et al. Influence of CaCO3 whisker on flexural behavior of steel-polyvinyl alcohol hybrid fiber reinforced cement matrix composite slabs[J]. Acta Materiae Compositae Sinica,2017,34(11):2614-2623(in Chinese).
    [16] CAO M, ZHANG C, LI Y, et al. Using calcium carbonate whisker in hybrid fiber-reinforced cementitious compo-sites[J]. ASCE Journal of Materials in Civil Engineering,2015,27(4):4014139. doi: 10.1061/(ASCE)MT.1943-5533.0001041
    [17] American Society of Testing Materials. Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression: ASTM C469/C469M-14[S]. West Conshohocken: American Society of Testing Materials, 2014.
    [18] 高丹盈, 李晗, 杨帆. 聚丙烯-钢纤维增强高强混凝土高温性能[J]. 复合材料学报, 2013, 30(1): 187-193.

    GAO Danying, LI Han, YANG Fan. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 187-193(in Chinese).
    [19] ZHENG W, LI H, WANG Y. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature[J]. Materials & Design,2012,41:403-409.
    [20] LI L, CAO M, YIN H. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste[J]. Cement and Concrete Composites,2019,104:103350. doi: 10.1016/j.cemconcomp.2019.103350
    [21] 宁喜亮, 丁一宁. 钢纤维对混凝土单轴受压损伤本构模型的影响[J]. 建筑材料学报, 2015, 18(2):214-220. doi: 10.3969/j.issn.1007-9629.2015.02.006

    NING Xiliang, DING Yining. Effect of steel fiber on the damage constitutive model of concrete under uniaxial compression[J]. Journal of Building Materials,2015,18(2):214-220(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.02.006
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Building Industry Press, 2010(in Chinese).
    [23] 郭晓宇, 亢景付, 朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版), 2017, 47(2):369-376. doi: 10.3969/j.issn.1001-0505.2017.02.028

    GUO Xiaoyu, KANG Jingfu, ZHU Jinsong. Constitutive relationship of ultrahigh performance concrete under uniaxial compression[J]. Journal of Southeast University (Natural Science Edition),2017,47(2):369-376(in Chinese). doi: 10.3969/j.issn.1001-0505.2017.02.028
    [24] 焦楚杰, 孙伟, 秦鸿根, 等. 钢纤维高强混凝土单轴受压本构方程[J]. 东南大学学报(自然科学版), 2004, 34(3):366-369.

    JIAO Chujie, SUN Wei, QIN Honggen, et al. Constitutive equation of SFRHSC under uniaxial compression[J]. Journal of Southeast University (Natural Science Edition),2004,34(3):366-369(in Chinese).
    [25] LI L, GUAN J, XIE Y, et al. Characterization of bending performance of reinforced cementitious composites beams with hybrid fibers after exposure to high temperatures[J]. Structural Concrete,2022,23(1):395-411. doi: 10.1002/suco.202100078
    [26] LI L, LI Z, CAO M, et al. Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900℃)[J]. Fractals,2021,29(2):2140001. doi: 10.1142/S0218348X21400016
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  408
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2021-11-24
  • 录用日期:  2021-12-07
  • 网络出版日期:  2021-12-23
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回