留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比

马俊豪 贾旭宏 汤婧 张晓宇 代尚沛 杨晓光

马俊豪, 贾旭宏, 汤婧, 等. 碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比[J]. 复合材料学报, 2022, 40(0): 1-10
引用本文: 马俊豪, 贾旭宏, 汤婧, 等. 碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比[J]. 复合材料学报, 2022, 40(0): 1-10
Junhao MA, Xuhong JIA, Jing TANG, Xiaoyu ZHANG, Shangpei DAI, Xiaoguang YANG. Comparison of pyrolysis and combustion characteristics of carbon fiber, glass fiber/epoxy resin[J]. Acta Materiae Compositae Sinica.
Citation: Junhao MA, Xuhong JIA, Jing TANG, Xiaoyu ZHANG, Shangpei DAI, Xiaoguang YANG. Comparison of pyrolysis and combustion characteristics of carbon fiber, glass fiber/epoxy resin[J]. Acta Materiae Compositae Sinica.

碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比

基金项目: 民航局安全能力建设项目(0242023);中国民用航空飞行学院重点项目(ZJ2021-01)
详细信息
    通讯作者:

    贾旭宏,博士,教授,硕士生导师,研究方向为民用飞机非金属材料燃烧特性与灭火剂合成研究  E-mail: jiaxuhong02@163.com

  • 中图分类号: TB332

Comparison of pyrolysis and combustion characteristics of carbon fiber, glass fiber/epoxy resin

  • 摘要: 民用飞机内饰壁板材料主要是纤维/树脂复合材料,该类复合材料具有一定的火灾危险性,因此研究其热稳定性和燃烧特性对于飞机防火具有重要意义。采用热重分析仪研究了不同升温速率对碳纤维/环氧树脂和玻璃纤维/环氧树脂两种典型飞机壁板材料热解的影响,并使用Kissinger法得到了分解阶段的表观活化能和指前因子;采用锥形量热仪研究了两种预浸料在不同火灾环境下的燃烧特性,并选取火势蔓延指数($ {\delta _{{\rm{FGI}}}} $)、火险潜在指数($ {\delta _{{\rm{FPI}}}} $)、放热指数($ {\delta _{{\rm{THRI}}}} $)、发烟指数($ {\delta _{{\rm{TSPI}}}} $)四种评价指标评估其火灾危险性;进而分析两种纤维在树脂复合材料热解、燃烧过程中的影响。结果表明:在空气气氛下,升温速率对两种预浸料的热解影响都较大,碳纤维在556℃以上发生分解,玻璃纤维未发生分解。在热解时玻璃纤维预浸料前两阶段的活化能明显高于碳纤维预浸料,表明玻璃纤维预浸料具有更高的热稳定性。碳纤维预浸料的热释放速率、产烟速率、总产热量、总产烟量均大于玻璃纤维预浸料,随着热辐射强度的增加,两种预浸料这些参数之间的差值都不断变大,碳纤维预浸料的$ {\delta _{{\rm{FGI}}}} $$ {\delta _{{\rm{THRI}}}} $$ {\delta _{{\rm{TSPI}}}} $均大于玻璃纤维预浸料,$ {\delta _{{\rm{FPI}}}} $值则相反。分析发现,两种纤维都对复合材料的热解有一定的抑制作用,但玻璃纤维抑制作用更明显,碳纤维/环氧复合材料火灾危险性更大。

     

  • 图  1  环氧树脂基体在空气气氛下升温速率10℃/min的TG和DTG曲线

    Figure  1.  TG and DTG curves of epoxy resin matrix in air atmosphere at 10℃/min

    图  2  碳纤维预浸料在不同升温速率下的TG/DTG曲线

    Figure  2.  TG/DTG curves of carbon fiber prepreg at different heating rates

    图  3  玻璃纤维预浸料在不同升温速率下的TG/DTG曲线

    Figure  3.  TG/DTG curves of glass fiber prepreg at different heating rates

    图  4  ${\text{In(}}{\beta _i}/T_{pi}^2)$$ 1/{T_{pi}} $之间的关系 (a)碳纤维预浸料 (b)玻璃纤维预浸料

    Figure  4.  The relationship between $ {\text{In(}}{\beta _i}/T_{pi}^2) $and $ 1/{T_{pi}} $ (a) carbon fiber prepreg (b) glass fiber prepreg

    Β—Heating rate, Tpi—Temperature corresponding to the maximum mass loss at each stage.

    图  5  热释放速率 (a)碳纤维预浸料 (b)玻璃纤维预浸料

    Figure  5.  Heat release rate (a)carbon fiber prepreg (b) glass fiber prepreg

    图  6  碳纤维预浸料和玻璃纤维预浸料的总放热量

    Figure  6.  Total heat release of carbon fibre prepreg and glass fibre prepreg

    图  7  产烟速率: (a)碳纤维预浸料 (b)玻璃纤维预浸料

    Figure  7.  Smoke production rate: (a) carbon fiber prepreg (b) glass fiber prepreg

    图  8  碳纤维预浸料和玻璃纤维预浸料的总产烟量

    Figure  8.  Total smoke production of carbon fibre prepreg and glass fibre prepreg

    表  1  两种预浸料热解温度参数

    Table  1.   Pyrolysis parameters of two prepregs

    MaterialHeating rates/
    (℃·min−1)
    Temperature scope of thermal decomposition/℃Temperature of maximum mass loss rate/℃
    First stageSecond stageThird stageFirst stageSecond stageThird stage
    Carbon fiber prepreg2296~424424~556556~728378475692
    5305~435435~568568~796396502768
    10317~452452~595595~836412518797
    15328~467467~628628~427538838
    Glass fiber prepreg2302~447447~570402505
    5316~451451~584418524
    10330~463463~614430537
    15335~478478~632443556
    下载: 导出CSV

    表  2  Kissinger方法计算了两种预浸料的热解动力学参数

    Table  2.   The Kissinger method calculates the pyrolysis kinetic parameters of the two prepregs

    MaterialHeating rates (℃ min−1)Slope k=−E/R Ek(kJ mol−1)InAR2

    Carbon fiber prepreg
    2−16.613138.1216.0890.9953
    5−17.831148.2514.1970.9912
    10−12.869106.992.8450.9909
    15−23.205192.9325.2490.9936
    Glass fiber
    prepreg
    −25.801214.5123.7920.9926
    Notes:k is the slope of the curve fitted to figure 4; E is the activation energy; R is molar gas constants; Ek is the apparent activation energy; Ak is the apparent pre-exponential factor; R2 is the degree of fit.
    下载: 导出CSV

    表  3  两种预浸料的火灾危险性评价指数

    Table  3.   Fire hazard evaluation index of two prepregs

    Risk evaluation indexCarbon fiber prepregGlass fiber prepreg
    25 kW·m−235 kW·m−250 kW·m−225 kW·m−235 kW·m−250 kW·m−2
    $ {\delta _{{\rm{FGI}}}} $/(kW/(m2·s))4.746.239.104.516.087.57
    $ {\delta _{{\rm{FPI}}}} $/((m2·s)/kW)0.1270.0970.0730.1370.1060.082
    $ {\delta _{{\rm{THRI}}}} $/(MJ/m2)−0.31−0.29−0.27−0.34−0.31−0.30
    $ {\delta _{{\rm{TSPI}}}} $/(m2·s)4.074.023.934.033.983.82
    Notes:$ {\delta _{{\rm{FGI}}}} $ is fire spread index; $ {\delta _{{\rm{FPI}}}} $ is fire potential index; $ {\delta _{{\rm{THRI}}}} $ is total heat release index; $ {\delta _{{\rm{TSPI}}}} $ is total smoke production index.
    下载: 导出CSV
  • [1] 吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1):4-9. doi: 10.3969/j.issn.1006-3536.2012.01.002

    WU Liangyi. The application extend of advanced composite materials: technology markets of and application in aerona-utics, astronaut and civil aviation[J]. New Chemical Materials,2012,40(1):4-9(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.01.002
    [2] LIU L, JIA C Y, HE J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2015,121:56-72. doi: 10.1016/j.compscitech.2015.08.002
    [3] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706.

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer mtrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese).
    [4] LIU W, ZHANG T, BAO J, et al. Effects of epoxy resin cross-linked structure characteristics on longitudinal comp- ressive performance of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2016,36(1):75-80.
    [5] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64.

    SUN Zhenqi, WU Anru. Application of Advanced Composite in Aircraft Structures[J]. Materials Reports,2015,29(11):61-64(in Chinese).
    [6] FAA. FAR. 25.853. Department of transportation, Federal Aviation administration regulations for compartment interiors [S]. Washington: FAA. 2000.
    [7] SEBASTIAN E. Influence of carbon fibre orientation on reaction-to-fire properties of polymer matrix composites[J]. Fire and Materials,2012,36(4):309-324. doi: 10.1002/fam.1112
    [8] SZOLNOKI B, BOCZ K, SOTI P L, et al. Development of natural fibre reinforced flame retarded epoxy resin composites[J]. Polymer Degradation and Stability,2015,119:68-76. doi: 10.1016/j.polymdegradstab.2015.04.028
    [9] 朱泽宇, 张旭, 王志, 等. 碳纤维/环氧复合材料燃烧及产烟特性研究 [J]. 中国胶粘剂, 2020(7): 48-53.

    ZHU Zeyu, ZHANG Xu, WANG Zhi, et al. Study on combustion and smoke production characteristics of carbon fiber/epoxy composites [J]. China Adhesives 2020(7): 48-53. (in Chinese)
    [10] 徐艳英, 张雷, 王志, 等. 基于锥形量热法的典型碳纤维/环氧复合材料燃烧特性[J]. 复合材料学报, 2017, 34(8):1674-1682.

    XU Yanying, ZHANG Lei, WANG Zhi, et al. Combustion characteristics of typical carbon fiber/epoxy composites bas- ed on the method of CONE[J]. Acta Materiae Compositae Sinica,2017,34(8):1674-1682(in Chinese).
    [11] 徐艳英, 杨扬, 张颖, 等. 单向碳纤维/环氧树脂预浸料热解特性[J]. 复合材料学报, 2018, 35(9):2442-2448.

    XU Yanying, YANG Yang, ZHANG Ying, et al. Pyrolysis characteristics of unidirectional carbon fiber/epoxy prepreg[J]. Acta Materiae Compositae Sinica,2018,35(9):2442-2448(in Chinese).
    [12] 计智, 徐艳英, 李金都, 等. 碳纤维/环氧复合材料的热解特性及动力学研究[J]. 消防科学与技术, 2020, 39(7):994-997. doi: 10.3969/j.issn.1009-0029.2020.07.029

    JI Zhi, XU Yanying, LI Jindu, et al. Pyrolysis characteristics and kinetics of carbon fiber/epoxy composites[J]. Fire Scie- nce and Technology,2020,39(7):994-997(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.07.029
    [13] REGNIER N, FONTAINE S. Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG[J]. Journal of Thermal Analysis and Calorimetry,2001,64(2):789-799. doi: 10.1023/A:1011512932219
    [14] 宋金梅, 刘辉, 王雷, 等. 废弃碳纤维/环氧树脂复合材料的热解特性及动力学研究[J]. 玻璃钢/复合材料, 2019(1):47-53.

    SONG Jinmei, LIU Hui, WANG Lei, et al. Pyrolysis charac-teristics and kinetics of scrap carbon fiber reinforced epoxy resin matrix composites[J]. Fiber Reinforced Plastics /Com- posites,2019(1):47-53(in Chinese).
    [15] 王一明, 刘杰, 吴广峰, 等. 亚临界水介质回收酸酐固化环氧树脂/碳纤维复合材料[J]. 应用化学, 2013, 30(6):643-647.

    WANG Yiming, LIU Jie, WU Guangfeng, et al. Subcritical water medium recovery acid anhydride cured epoxy resin/carbon fiber composite material[J]. Chinese Journal of Applied Chemistry,2013,30(6):643-647(in Chinese).
    [16] WANG H Y, ZHANG L. Pyrolysis and combustion characteristics and reaction kinetics of carbon fiber/epoxy composites[J]. AIP Advances,2019,9(12):125110-125110. doi: 10.1063/1.5128460
    [17] DAO D Q, LUCHE J, F RICHARD, et al. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter[J]. International Journal of Hydrogen Energy,2013,38(19):8167-8178. doi: 10.1016/j.ijhydene.2012.05.116
    [18] 陈敏孙, 江厚满, 刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J]. 强激光与粒子束, 2010, 22(9):1969-1972. doi: 10.3788/HPLPB20102209.1969

    CHEN Minsun, JIANG Houman, LIU Zejin. Determination of thermal decomposition kinetic parameters of glass fiber / epoxy composite[J]. High Power Laser and Particle Beams,2010,22(9):1969-1972(in Chinese). doi: 10.3788/HPLPB20102209.1969
    [19] 郭云竹, 孙远君. 玻璃纤维/环氧树脂复合材料的热性能 [J]. 纤维复合材料, 2011(2): 33-35.

    GUO Yunzhu, SUN Yuanjun. Thermal properties of glass fiber/epoxy composites [J]. Fiber Composites 2011(2): 33-35. (in Chinese)
    [20] 张颖, 王志, 徐艳英, 等. 高强玻璃纤维复合材料热解动力学研究[J]. 消防科学与技术, 2017, 36(2):149-152.

    ZHANG Ying, WANG Zhi, XU Yanying, et al. Study on pyrolysis kinetics of high-strength glass fiber/epoxy resin composites[J]. Fire Science and Technology,2017,36(2):149-152(in Chinese).
    [21] BHATTACHARYYA, DEBES, RAJAEI, et al. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites[J]. Composites Part B,2017,113:381-390. doi: 10.1016/j.compositesb.2017.01.039
    [22] 张成林, 董抒华, 李丽君, 等. E-玻璃纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9):152-157. doi: 10.11868/j.issn.1001-4381.2019.000865

    ZHANG Chenglin, DONG Shuhua, LI Lijun, et al. Curing kinetics and dynamic thermodynamic properties of e-glass fiber/epoxy resin prepreg[J]. Journal of Materials Engineering,2020,48(9):152-157(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000865
    [23] LI Zhuangzhuang, ZOU Zhenyue, QIN Yan, et al. The effect of fibre content on properties of ceramifiable composites[J]. Plastics, Rubber and Composites,2020,49(5):230-236. doi: 10.1080/14658011.2020.1731258
    [24] DAO D Q, ROGAUME T, LUCHE J, et al. Thermal degradation of epoxy resin/carbon fiber composites: Influence of carbon fiber fraction on the fire reaction properties and on the gaseous species release[J]. Fire and Materials,2016,40(1):27-47.
    [25] 张冰, 杨素洁, 杨亚东, 等. 三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性[J]. 复合材料学报, 2021, 38(8):2505-2516.

    ZHANG Bing, YANG Shujie, YANG Yawei, et al. Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2505-2516(in Chinese).
    [26] HUANG G R, LIU H B, YANG L, et al. Pyrolysis behavior of graphene/phenolic resin composites[J]. New Carbon Materials,2015,98(5):734-734.
    [27] YANG T, YUAN G, XIA M, et al. Kinetic analysis of the pyrolysis of wood/inorganic composites under nonisothermal conditions[J]. European Journal of Wood and Wood Products,2021,79(8):1-12.
    [28] KAUR, RAVNEET, GERA, et al. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis[J]. Bioresource Technology,2018,250:422-428. doi: 10.1016/j.biortech.2017.11.077
    [29] LIU L S, ZHANG X Y, ZHAO R X, et al. Pyrolysis of Phragmites hirsuta study on pyrolysis characteristics, kinetic and thermodynamic analyses[J]. International Journal of Energy Research,2021,45(10):15200-15216. doi: 10.1002/er.6795
    [30] 徐翊桄, 靳玉伟, 张海龙, 等. 碳纤维热氧化行为及其机理[J]. 合成纤维工业, 2010, 33(6):5-7. doi: 10.3969/j.issn.1001-0041.2010.06.002

    XU Yiguang, JIN Yuwei, ZHANG Hailong, et al. Thermal oxidation behavior and mechanism of carbon fiber[J]. China Synthetic Fiber Industry,2010,33(6):5-7(in Chinese). doi: 10.3969/j.issn.1001-0041.2010.06.002
    [31] REN N, ZHANG J J. Progress in datum treatment methods of thermal analysis kinetics[J]. Progress in Chemistry,2006,18(4):410-416.
    [32] MIRANDA M, PINTO F, GULYURTLU I, et al. Pyrolysis of rubber tyre wastes: A kinetic study[J]. Fuel,2013,103(JAN.):542-552.
    [33] 许镇, 唐方勤, 任爱珠. 烟气毒性多气体的改进评价模型[J]. 清华大学学报(自然科学版), 2011, 51(2):194-197.

    XU Zhen, TANG Fangqin, REN Aizhu. Improved evaluati- on model of smoke toxicity and multi-gas[J]. Journal of Tsinghua University (Science and Technology),2011,51(2):194-197(in Chinese).
    [34] YANG Z, YI A H, LIU J Y, et al. Study of fire hazard of flooring materials on data of cone calorimeter[J]. Procedia Engineering,2016,135:584-587. doi: 10.1016/j.proeng.2016.01.113
    [35] 李禄超, 王志, 徐艳英, 等. 碳纤维环氧复合材料火灾危险综合评价[J]. 安全与环境学报, 2016, 16(5):62-66.

    LI Luchao, WANG Zhi, XU Yanying, et al. Comprehensive evaluation of the fire risks faced by the typical epoxy resin/carbon fiber composites[J]. Journal of Safety and Environment,2016,16(5):62-66(in Chinese).
    [36] TIAN X A, RWA B, ZHI W A, et al. Comparative analysis of thermal oxidative decomposition and fire characteristics for different straw powders via thermogravimetry and cone calorimetry[J]. Process Safety and Environmental Protection,2020,134(C):121-130.
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 录用日期:  2022-03-19
  • 修回日期:  2022-03-06
  • 网络出版日期:  2022-04-07

目录

    /

    返回文章
    返回