留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同浓度的NiS2-FeS2/碳纳米纤维对电极对量子点敏化太阳能电池光伏性能的影响

樊娆 王森阳 梁城洋 曹颖 耿仕通 李玲

樊娆, 王森阳, 梁城洋, 等. 不同浓度的NiS2-FeS2/碳纳米纤维对电极对量子点敏化太阳能电池光伏性能的影响[J]. 复合材料学报, 2023, 40(12): 6681-6688. doi: 10.13801/j.cnki.fhclxb.20230224.002
引用本文: 樊娆, 王森阳, 梁城洋, 等. 不同浓度的NiS2-FeS2/碳纳米纤维对电极对量子点敏化太阳能电池光伏性能的影响[J]. 复合材料学报, 2023, 40(12): 6681-6688. doi: 10.13801/j.cnki.fhclxb.20230224.002
FAN Rao, WANG Senyang, LIANG Chengyang, et al. Effects of NiS2-FeS2/carbon nanofibers counter electrodes with different concentrations on the photovoltaic performance of quantum dot sensitized solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6681-6688. doi: 10.13801/j.cnki.fhclxb.20230224.002
Citation: FAN Rao, WANG Senyang, LIANG Chengyang, et al. Effects of NiS2-FeS2/carbon nanofibers counter electrodes with different concentrations on the photovoltaic performance of quantum dot sensitized solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6681-6688. doi: 10.13801/j.cnki.fhclxb.20230224.002

不同浓度的NiS2-FeS2/碳纳米纤维对电极对量子点敏化太阳能电池光伏性能的影响

doi: 10.13801/j.cnki.fhclxb.20230224.002
基金项目: 国家自然科学基金(51772073);河北省自然科学基金重点项目(E2020201030);京津冀协同创新共同体建设专项(21344301D);河北大学2022年大学生创新创业计划训练资助项目(2022169;2022165;2022170)
详细信息
    通讯作者:

    李玲,博士,教授,博士生导师,研究方向为染料(量子点)敏化太阳能电池性能的研究 E-mail: lilinghbu@163.com

  • 中图分类号: TQ174;TB33

Effects of NiS2-FeS2/carbon nanofibers counter electrodes with different concentrations on the photovoltaic performance of quantum dot sensitized solar cells

Funds: National Natural Science Foundation of China (51772073); Key project of Natural Science Foundation of Hebei Province (E2020201030); The Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project (21344301D); Hebei University 2022 College Students' Innovation and Entrepreneurship Plan Training Grant Project (2022169; 2022165; 2022170)
  • 摘要: 为了弥补量子点敏化太阳能电池传统Cu2S对电极在液态多硫化物电解液中易腐蚀、不稳定的缺陷,表现出更高的对电极电催化活性。本文通过静电纺丝技术和简单的一步水热法成功制备了碳纳米纤维负载的双金属硫化物NiS2-FeS2(NiS2-FeS2/CNFs)对电极,应用于量子点敏化太阳能电池(QDSSCs)中表现出优异的电化学性能。同时,不同浓度的NiS2-FeS2复合材料在SEM下表现出很大的差异,负载到碳纳米纤维制备成对电极对电池性能也有很大的影响。因此,本文重点探究了水热法制备不同浓度的NiS2-FeS2/CNFs对电极对其组装的QDSSCs光电性能影响,以获得最佳对电极浓度。实验结果表明:当 NiS2-FeS2/CNFs 浓度配比为0.8时,电池光电转换效率(PCE)达到最大值为8.05%。

     

  • 图  1  纯CNFs (a) 和浓度比为0.5、0.8及1的NiS2-FeS2材料的SEM图像 ((b)~(d)) 及其放大图 ((e)~(g)) ;((h)~(j)) 浓度比为0.5、0.8及1的NiS2-FeS2材料SEM图像;((k), (l)) NiS2-FeS2/CNFs-0.8复合材料的TEM图像

    Figure  1.  SEM images of NiS2-FeS2 materials with pure CNFs (a) and concentration ratios of 0.5, 0.8 and 1 ((b)-(d)) and their magnification ((e)-(g)); ((h)-(j)) NiS2-FeS2/CNFs composites with concentration ratios of 0.5, 0.8 and 1; ((k), (l)) TEM images of NiS2-FeS2/CNFs-0.8

    d—Lattice distance

    图  2  NiS2-FeS2/CNFs-0.8复合材料的元素映射图((a)~(e))和EDS图谱(f)

    Figure  2.  Element mapping ((a)-(e)) and EDS spectrum (f) of NiS2-FeS2/CNFs-0.8 composite

    图  3  不同浓度NiS2-FeS2/CNFs复合材料的XRD图谱

    Figure  3.  XRD patterns of NiS2-FeS2/CNFs composites with different concentrations

    图  4  不同对电极的Tafel曲线

    Figure  4.  Tafel polarization curves of different counter electrodes

    图  5  不同对电极的Nyquist曲线

    Figure  5.  Nyquist plots of different counter electrodes

    图  6  不同对电极的电流密度(J)-电压(V)曲线

    Figure  6.  Current density (J)-potential (V) curves of different counter electrodes

    图  7  不同浓度NiS2-FeS2/CNFs对电极的三电极CV曲线

    Figure  7.  CV curves of three electrode with different concentrations of NiS2-FeS2/CNFs

    图  8  (a) Cu2S/brass对电极的3次循环伏安图;(b) NiS2-FeS2/CNFs对电极的10次循环伏安图

    Figure  8.  (a) 3-cycle voltammetry of Cu2S/brass counter electrode; (b) 10-cycles voltammetry of NiS2-FeS2/CNFs counter electrode

    表  1  NiS2-FeS2/碳纳米纤维(CNFs)复合材料的命名

    Table  1.   Naming of NiS2-FeS2/carbon nanofiber (CNFs) composite mmol

    Sample FeCl2·4H2O NiCl2·6H2O Na2S2O3 Urea
    NiS2-FeS2/CNFs-1 1 1 16 0.8
    NiS2-FeS2/CNFs-0.8 0.8 0.8 16 0.8
    NiS2-FeS2/CNFs-0.5 0.5 0.5 16 0.8
    下载: 导出CSV

    表  2  不同对电极的电化学阻抗(EIS)参数

    Table  2.   Electrochemical impedance (EIS) parameters of different counter electrodes

    Counter electrodeRs/(Ω·cm−2)Rct/(Ω·cm−2)ZN/(Ω·cm−2)
    NiS2-FeS2/CNFs-14.050.100.05
    NiS2-FeS2/CNFs-0.84.050.050.01
    NiS2-FeS2/CNFs-0.54.050.080.02
    Cu2S/brass4.060.130.06
    CNFs-Ti4.060.150.11
    Notes: Cu2S/brass—Standard Cu2S counterelectrode; CNFs-Ti—CNFs counterelectrode based on titanium mesh; Rs—Series resistance; Rct—Impedance of charge transfer at the electrode/electrolyte interface; ZN—Nernst diffusion impedance.
    下载: 导出CSV

    表  3  不同对电极在量子点敏化太阳能电池(QDSSCs)中的光伏性能参数

    Table  3.   Photovoltaic parameters of the quantum dot sensitized solar cells (QDSSCs) based on different counter electrodes

    Counter electrodeVoc/VJsc/(mA·cm−2)FFPCE/%
    NiS2-FeS2/CNFs-10.6622.100.527.39
    NiS2-FeS2/CNFs-0.80.6823.970.528.05
    NiS2-FeS2/CNFs-0.50.6723.100.517.62
    Cu2S/brass0.6421.850.507.03
    CNFs-Ti0.6120.970.486.20
    Notes: Voc—Open circuit voltage; Jsc—Short circuit photocurrent densities; FF—Fill factor; PCE—Photoconversion efficiency.
    下载: 导出CSV
  • [1] KUMAR S, NEHRA M, DEEP A, et al. Quantum-sized nanomaterials for solar cell applications[J]. Renewable and Sustainable Energy Reviews,2017,73:821-839. doi: 10.1016/j.rser.2017.01.172
    [2] DU Z L, ARTEMYEV M, WANG J, et al. Performance improvement strategies for quantum dot-sensitized solar cells: A review[J]. Journal of Materials Chemistry A,2019,7(6):2464-2489. doi: 10.1039/C8TA11483H
    [3] YU J, WANG W R, PAN Z X, et al. Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte[J]. Journal of Materials Chemistry A,2017,5(27):14124-14133. doi: 10.1039/C7TA04344A
    [4] CHEN L, CHEN W L, TAN H Q, et al. The improved efficiency of quantum-dot-sensitized solar cells with a wide spectrum and pure inorganic donor-acceptor type polyoxometalate as a collaborative cosensitizer[J]. Journal of Materials Chemistry A,2016,4(11):4125-4133. doi: 10.1039/C5TA10260J
    [5] RUHLE S, SHALOM M, ZABAN A. Quantum-dot-sensitized solar cells[J]. ChemPhysChem,2010,11(11):2290-2304. doi: 10.1002/cphc.201000069
    [6] SONG H, LIN Y, ZHANG Z Y, et al. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition[J]. Journal of the American Chemical Society,2021,143(12):4790-4800. doi: 10.1021/jacs.1c01214
    [7] SHEN T, BIAN L, LI B, et al. A structure of CdS/CuxS quantum dots sensitized solar cells[J]. Applied Physics Letters,2016,108(21):213901. doi: 10.1063/1.4952435
    [8] MORA-SERÓ I, BISQUERT J. Breakthroughs in the development of semiconductor-sensitized solar cells[J]. Journal of Physical Chemistry Letters,2010,1(20):3046-3052. doi: 10.1021/jz100863b
    [9] LUO Y H, LI D M, MENG Q. Towards optimization of materials for dye-sensitized solar cells[J]. Advanced Materials,2009,21(45):4647-4651. doi: 10.1002/adma.200901078
    [10] CHEBROLU V T, KIM H J. Recent progress in quantum dot sensitized solar cells: An inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode[J]. Jour-nal of Materials Chemistry C,2019,7(17):4911-4933. doi: 10.1039/C8TC06476H
    [11] WANG S X, TIAN J J. Recent advances in counter electrodes of quantum dot-sensitized solar cells[J]. RSC Advances,2016,6(93):90082-90099. doi: 10.1039/C6RA19226B
    [12] HWANG I, YONG K. Counter electrodes for quantum-dot-sensitized solar cells[J]. ChemElectroChem,2015,2(5):634-653. doi: 10.1002/celc.201402405
    [13] WANG Y, YAO M S, ZHAO L J, et al. CuxS nanoparticle@carbon nanorod composites prepared from metal-organic frameworks as efficient electrode catalysts for quantum dot sensitized solar cells[J]. Journal of Materials Chemistry A,2019,7(5):2210-2218. doi: 10.1039/C8TA10629K
    [14] CHEN Y F, QIU Q Q, WANG D J, et al. CuSe/CuxS as a composite counter electrode based on P-N heterojunction for quantum dot sensitized solar cells[J]. Journal of Power Sources,2019,413:68-76. doi: 10.1016/j.jpowsour.2018.12.027
    [15] YE M, CHEN C, ZHANG N, et al. Quantum-dot sensitized solar cells employing hierarchical Cu2S microspheres wrapped by reduced graphene oxide nanosheets as effective counter electrodes[J]. Advanced Energy Materials,2014,4(9):1301564. doi: 10.1002/aenm.201301564
    [16] ZHAO L J, ZHAO L L, XUE W N, et al. N-doped carbon@Cu nanocomposites as counter electrode catalysts in quantum dot-sensitized solar cells[J]. Solar Energy,2018,169:505-511. doi: 10.1016/j.solener.2018.04.048
    [17] DONG B, ZHAO X, HAN G Q, et al. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A,2016,4(35):13499-13508. doi: 10.1039/C6TA03177C
    [18] RANI B J, KANJANA P A, RAVI G, et al. Superior electrochemical water oxidation of novel NiSFeS2 nanocompo-sites[J]. Materials Science in Semiconductor Processing,2019,101:174-182. doi: 10.1016/j.mssp.2019.06.010
    [19] SONG C, WANG S M, DONG W W, et al. Hydrothermal synthesis of iron pyrite (FeS2) as efficient counter electrodes for dye-sensitized solar cells[J]. Solar Energy,2016,133:429-436. doi: 10.1016/j.solener.2016.04.002
    [20] XU J, XUE H T, YANG X, et al. Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells[J]. Small,2014,10(22):4754-4759. doi: 10.1002/smll.201401102
    [21] KIRKEMINDE A, RUZICKA B A, WANG R, et al. Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates[J]. ACS Applied Materials & Interfaces,2012,4(3):1174-1177.
    [22] SHWETHARANI R, BALAKRISHNA R G. One-pot synthesis of flower like FeS2 as counter electrode for quantum dot sensitized solar cells[J]. Materials Today: Proceedings,2019,9:594-598. doi: 10.1016/j.matpr.2018.10.380
    [23] GONG C, HONG X, XIANG S, et al. NiS2 nanosheet films supported on Ti foils: Effective counter electrodes for quantum dot-sensitized solar cells[J]. Journal of the Electrochemical Society,2018,165(3):H45-H51. doi: 10.1149/2.0171803jes
    [24] WANG W, FENG W, DU J, et al. Cosensitized quantum dot solar cells with conversion efficiency over 12%[J]. Advanced Materials,2018,30(11):1705746. doi: 10.1002/adma.201705746
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  203
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-02-09
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回