留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响

高世壮 薛善彬 张鹏 李春云 王俊洁

高世壮, 薛善彬, 张鹏, 等. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J]. 复合材料学报, 2022, 39(0): 1-10
引用本文: 高世壮, 薛善彬, 张鹏, 等. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J]. 复合材料学报, 2022, 39(0): 1-10
Shizhuang GAO, Shanbin XUE, Peng ZHANG, Chunyun LI, Junjie WANG. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica.
Citation: Shizhuang GAO, Shanbin XUE, Peng ZHANG, Chunyun LI, Junjie WANG. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica.

高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响

基金项目: 国家自然科学基金(51922052);国家自然科学基金NSFC-山东联合基金(U2106220);国家自然科学基金青年科学基金项目(52008222);山东省自然科学基金培养基金(ZR2019PEE001)
详细信息
    通讯作者:

    张鹏,博士,教授,博士生导师,研究方向为混凝土耐久性 E-mail: peng.zhang@qut.edu.cn

  • 中图分类号: TU528

Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites

  • 摘要: 在高温环境下,应变硬化水泥基复合材料(Strain Hardening Cementitious Composites, SHCC)微结构发生破坏,进而导致其力学与抗渗性能及微结构的劣化。对比研究20℃(常温)及105℃、200℃、400℃、600℃及800℃高温作用后,不同纤维掺量的SHCC试件力学与吸水性能的演化规律,并利用低场核磁共振等技术从微观角度分析了材料宏观性能劣化机制。结果表明:当受热温度由20℃升高至105℃时,试件的动弹性模量有所下降,但抗压强度及抗折强度有所提高。当受热温度升至200℃时,SHCC抗压强度和动弹性模量变化不大,但受热温度高于400℃后,二者均迅速下降;受热温度由105℃升至200℃时,SHCC试件抗折强度显著降低;高于400℃后,抗折强度进一步劣化。纤维掺量对高温作用后的SHCC试件残余力学性能没有明显规律性的影响。另发现,当受热温度低于200℃时,SHCC毛细吸水性能较差,具有一定的抗毛细入渗性能;400℃以上时,高温损伤能够显著促进SHCC试件的毛细吸水速度和吸水量。低于200℃时,较高纤维掺量的SHCC试件初始毛细吸水系数增加更为迅速,毛细吸水能力更强。加热温度不高于200℃时,SHCC试件的微结构较为密实;超过400℃后,SHCC试件内部纤维熔化、裂纹生成与扩展导致其力学性能显著劣化,毛细吸水性能提高。同时,高温后SHCC试件内部裂纹体积分数随纤维掺量的增加而升高。

     

  • 图  1  高温后不同PVA纤维掺量的SHCC力学性能

    Figure  1.  Mechanical properties of SHCC with different PVA fiber contents after high temperature

    图  2  不同温度下不同PVA纤维掺量的SHCC毛细吸水变化曲线

    Figure  2.  Capillary water absorption curves of SHCC with different PVA fiber contents at different temperatures

    图  3  高温下PVA纤维及高温损伤SHCC表面形貌变化

    Figure  3.  Apparent characteristics of PVA fiber and SHCC under high temperature damage

    图  4  不同温度下各纤维掺量SHCC的T2分布曲线

    Figure  4.  T2 spectra of SHCC with different fiber contents at different temperatures

    图  5  不同温度下各PVA纤维掺量SHCC的空隙体积分数

    Figure  5.  Void volume fraction of SHCC with different PVA fiber contents at different temperatures

    图  6  不同温度下各PVA纤维掺量SHCC力学性能、中大孔(裂纹)体积分数及毛细吸水系数间的关系

    Figure  6.  Relationship between mechanical properties, volume fraction of large pores (cracks) and capillary water absorption coefficient of SHCC with different PVA fiber contents at different temperatures

    表  1  不同聚乙烯醇(PVA)纤维掺量的应变硬化水泥基复合材料(SHCC)配合比

    Table  1.   Mix proportions of strain hardening cementitious composites (SHCC) with different polyvinyl alclhol (PVA) fiber contents

    No.mw/mcMaterial (kg·m−3)
    CementFly ashSilica sandWaterPVA fibersSP
    1.5vol%PVA/SHCC0.2555065055030119.58
    1.8vol%PVA/SHCC0.2555065055030123.58
    2.0vol%PVA/SHCC0.25550650550301268
    Notes: 1.5vol%PVA/SHCC, 1.8vol%PVA/SHCC and 2.0vol%PVA/SHCC represent the fiber accounts for 1.5%, 1.8% and 2.0% of the total volume of the cementitious material; mw /mc is the mass of water and cementitious material; SP is the superplasticizer.
    下载: 导出CSV

    表  2  不同PVA纤维掺量的SHCC初始毛细吸水系数

    Table  2.   Initial capillary water absorption coefficients of SHCC with different PVA fiber contents

    Temperature /℃1.5vol%PVA/SHCC
    /(g·cm−2·min−0.5)
    1.8vol%PVA/SHCC
    /(g·cm−2·min−0.5)
    2.0vol%PVA/SHCC
    /(g·cm−2·min−0.5)
    200.0070.0090.007
    1050.0080.0090.008
    2000.0100.0140.019
    4000.0190.0200.025
    6000.1170.0620.119
    8000.3230.3260.357
    下载: 导出CSV

    表  3  不同温度下不同PVA纤维掺量SHCC的孔隙度

    Table  3.   Porosity of SHCC with different PVA fiber contents under different temperatures

    Temperature /℃1.5vol%PVA/SHCC1.8vol%PVA/SHCC2.0vol%PVA/SHCC
    1050.0690.0880.104
    2000.1580.1590.160
    4000.2300.2390.228
    6000.2820.2900.261
    8000.3090.3080.296
    下载: 导出CSV
  • [1] WANG X S, WU B S, WANG Q Y. Online SEM investigation of microcrack characteristics of concretes at various temperatures[J]. Cement and Concrete Research,2005,35(7):1385-1390. doi: 10.1016/j.cemconres.2004.07.015
    [2] VODAK F, TRTIK K, KAPICKOVA O, et al. The effect of temperature on strength–porosity relationship for concrete[J]. Construction and Building Materials,2004,18(7):529-534. doi: 10.1016/j.conbuildmat.2004.04.009
    [3] CHAN Y N, LUO X, SUN W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C[J]. Cement and Concrete Research,2000,30(2):247-251. doi: 10.1016/S0008-8846(99)00240-9
    [4] NOUMOWE A. Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200℃[J]. Cement and Concrete Research,2005,35(11):2192-2198. doi: 10.1016/j.cemconres.2005.03.007
    [5] 高贯鹏. 高温后PVA-SHCC的力学性能与抗渗性能试验研究 [D]. 青岛: 青岛理工大学, 2012.

    GAO Guanpeng. Experimental study on the mechanical properties and anti-permeability of PVA-SHCC after high temperature [D]. Qingdao: Qingdao Technological University, 2012(in Chinese).
    [6] PENG Z, DAI Y, DING X, et al. Self-healing behaviour of multiple microcracks of strain hardening cementitious composites (SHCC)[J]. Construction and Building Materials,2018,169:705-715. doi: 10.1016/j.conbuildmat.2018.03.032
    [7] LIU L X. Fire Performance of High Strength Concrete Materials and Structural Concrete [D]. Florida: Florida Atlantic University, 2009.
    [8] YAN L, XING Y M, LI J J. High-temperature mechanical properties and microscopic analysis of hybrid-fiber-reinforced high-performance concrete[J]. Magazine of Concrete Research,2013,65(3-4):139-147.
    [9] YU J, LIN J, ZHANG Z, et al. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures[J]. Construction and Building Materials,2015,99:82-89. doi: 10.1016/j.conbuildmat.2015.09.002
    [10] 林建辉, 余江滔, Victor C L. 超高韧度水泥基复合材料经亚高温处理后的性能[J]. 硅酸盐学报, 2015, 43(5):604-609.

    LIN Jianhui, YU Jiangtao, VICTOR C L. Performance of Engineered Cementitious Composites After Treated at Sub-high Temperatures[J]. Journal of the Chinese Ceramic Society,2015,43(5):604-609(in Chinese).
    [11] 高丹盈, 赵亮平, 杨淑慧. 纤维矿渣微粉混凝土高温中的劈拉性能[J]. 硅酸盐学报, 2012, 40(5):677-684.

    GAO Danying, ZHAO Liangping, YANG Shuhui. Splitting Tensile Properties of Fiber Reinforced Ground Granulated Blast Furnace Slag Concrete at High Temperatures[J]. Journal of the Chinese Ceramic Society,2012,40(5):677-684(in Chinese).
    [12] 褚洪岩, 孙伟, 蒋金洋. 高温作用下牺牲混凝土的损伤演化[J]. 硅酸盐学报, 2016, 44(2):211-217.

    CHU Hongyan, SUN Wei, JIANG Jinyang. Damage Evolution of Sacrificial Concrete Subjected to Elevated Temperatures[J]. Journal of the Chinese Ceramic Society,2016,44(2):211-217(in Chinese).
    [13] STELZNER L, POWIERZA B, OESCH T, et al. Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR[J]. Construction and Building Materials,2019,224(Nov.10):600-609.
    [14] NOUMOWE A N, SIDDIQUE R, DEBICKI G. Permeability of high-performance concrete subjected to elevated temperature (600°C)[J]. Construction & Building Materials,2009,23(5):1855-1861.
    [15] LIU J C, HAI T K. Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature[J]. Cement and Concrete Composites,2018,93:235-245. doi: 10.1016/j.cemconcomp.2018.07.015
    [16] KALIFA P, GREGOIRE C, CHRISTOPHE G. High-temperature behaviour of HPC with polypropylene fibers: From spalling to microstructure[J]. Cement and Concrete Research,2001,31(10):1487-1499. doi: 10.1016/S0008-8846(01)00596-8
    [17] ZHANG D, DASARI A, TAN K H. On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers[J]. Cement and Concrete Research,2018,113:169-17. doi: 10.1016/j.cemconres.2018.08.012
    [18] ZHAO H T, DING J, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete,2019,20(1).
    [19] 谢恩慧, 周春圣. 利用低场磁共振弛豫测孔技术预测水泥基材料的水分渗透率[J]. 硅酸盐学报, 2020, 48(11):1808-1816.

    XIE Enhui, ZHOU Chunsheng. Prediction of Water Permeability for Cement-based Material from the Pore Size Distribution Achieved by Low-field Nuclear Magnetic Resonance Relaxation Technique[J]. Journal of the Chinese Ceramic Society,2020,48(11):1808-1816(in Chinese).
    [20] Zhou C S, REN F Z, ZENG Q, et al. Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation[J]. Cement and Concrete Research,2018,105:31-43. doi: 10.1016/j.cemconres.2017.12.002
    [21] 陶高梁, 陈银, 袁波, 等. 基于NMR技术及分形理论预测SWRC[J]. 岩土工程学报, 2018, 40(8):1466-1472.

    TAO Gaoliang, CHEN Yin, YUAN Bo, et al. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering),2018,40(8):1466-1472(in Chinese).
    [22] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9):2285-2293.

    XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2020,37(9):2285-2293(in Chinese).
    [23] 中国国家标准化管理委员会. 钢丝网水泥用砂浆力学性能试验方法. GB/T 7897—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration Of The People's Republic Of China. Test methods of mechanical properties of mortar for ferrocement. GB/T 7897—2008[S]. Beijing: Standards Press of China, 2008(in Chinese)
    [24] LI Y, ZHANG Y, YANG E H, et al. Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure[J]. Cement and Concrete Research,2019,116:168-178. doi: 10.1016/j.cemconres.2018.11.009
    [25] 张彬. 水泥基材料的高温特性及其再水化修复的研究 [D]. 武汉: 武汉理工大学, 2012.

    ZHANG Bin. Study on the high temperature characteristics and rehydration repair of cement-based materials [D]. Wuhan: Wuhan Technological University, 2012(in Chinese).
    [26] Li, Ye, Tan, et al. Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature[J]. Construction and Building Materials,2018,169:629-637.
  • 加载中
计量
  • 文章访问数:  77
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 录用日期:  2021-12-24
  • 修回日期:  2021-12-15
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回