留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚多巴胺改性纳米二氧化硅增强反式-1, 4-聚异戊二烯形状记忆聚合物的制备与性能

张闯 张静 王娜 李龙

张闯, 张静, 王娜, 等. 聚多巴胺改性纳米二氧化硅增强反式-1, 4-聚异戊二烯形状记忆聚合物的制备与性能[J]. 复合材料学报, 2023, 40(5): 2772-2782. doi: 10.13801/j.cnki.fhclxb.20220616.002
引用本文: 张闯, 张静, 王娜, 等. 聚多巴胺改性纳米二氧化硅增强反式-1, 4-聚异戊二烯形状记忆聚合物的制备与性能[J]. 复合材料学报, 2023, 40(5): 2772-2782. doi: 10.13801/j.cnki.fhclxb.20220616.002
ZHANG Chuang, ZHANG Jing, WANG Na, et al. Preparation and properties of polydopamine modified nano-silica reinforced trans-1, 4-polyisoprene shape memory polymers[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2772-2782. doi: 10.13801/j.cnki.fhclxb.20220616.002
Citation: ZHANG Chuang, ZHANG Jing, WANG Na, et al. Preparation and properties of polydopamine modified nano-silica reinforced trans-1, 4-polyisoprene shape memory polymers[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2772-2782. doi: 10.13801/j.cnki.fhclxb.20220616.002

聚多巴胺改性纳米二氧化硅增强反式-1, 4-聚异戊二烯形状记忆聚合物的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220616.002
基金项目: 国家重点研发计划“科技冬奥”(2019YFF0302004);辽宁省“兴辽英才计划”项目(XLYC2005002);2021年辽宁省“揭榜挂帅”科技攻关项目(2021JH1/10400091);沈阳市科学技术计划-重大关键核心技术攻关专项(20-202-1-15);辽宁省教育厅科学研究经费项目(LJKZ0436)
详细信息
    通讯作者:

    王娜,博士,教授,硕士生/博士生导师,研究方向为功能高分子复合材料 E-mail: iamwangna@syuct.edu.cn;

    李龙,博士,讲师,硕士生导师,研究方向为功能高分子材料 E-mail: lilong@syuct.edu.cn

  • 中图分类号: TB332

Preparation and properties of polydopamine modified nano-silica reinforced trans-1, 4-polyisoprene shape memory polymers

Funds: National Key Research and Development Program "Science and Technology Winter Olympics" (2019YFF0302004); Liaoning Xingliao Talents Program (XLYC2005002); 2021 Science and Technology Research Project of Liaoning Province (2021JH1/10400091); Shenyang Science and Technology Plan-Major Key and Core Technology Research Project (20-202-1-15); Scientific Research Fund of Education Department of Liaoning Province (LJKZ0436)
  • 摘要: 由于形状记忆聚合物(SMP)较低的力学强度,不足以满足现今大多数商用复合材料的使用标准,严重限制了其在许多高级应用中的使用。因此,为制备高性能SMP复合材料,利用聚多巴胺(PDA)对纳米SiO2进行表面改性,制备了一种新型纳米填料SiO2@PDA,并通过SEM、XPS和FTIR对其结构和性能进行了表征。将SiO2和SiO2@PDA作为纳米填料填充到反式-1, 4-聚异戊二烯(TPI)中,制备了TPI形状记忆复合材料,系统的研究了TPI/SiO2和TPI/SiO2@PDA复合材料的热稳定性、力学性能和形状记忆性能。结果表明:PDA修饰增强了SiO2在TPI基体中的分散性和界面相互作用,从而使TPI/SiO2@PDA复合材料的热稳定性、力学性能得到提升的同时仍能够保持良好的形状记忆性能。当SiO2@PDA含量为1.5% (以TPI的质量为基准,下同)时,TPI复合材料的冲击强度和拉伸强度达到最大值,分别比纯TPI提高了43.5%和25%。此外,复合材料固定率(Rf)和回复率(Rr)均超过97%。

     

  • 图  1  SiO2@聚多巴胺(PDA)制备工艺示意图

    Figure  1.  Schematic of preparation process for SiO2@polydopamine (PDA)

    图  2  SiO2、PDA和SiO2@PDA的红外图谱

    Figure  2.  FTIR spectra of SiO2, PDA and SiO2@PDA

    图  3  (a) SiO2和SiO2@PDA的XPS全谱;((b)~(d)) SiO2@PDA的N1s、O1s和Si2p的XPS图谱

    Figure  3.  (a) XPS survey specrta of SiO2 and SiO2@PDA; ((b)-(d)) N1s, O1s and Si2p XPS spectra of SiO2@PDA

    图  4  SiO2 (a)和SiO2@PDA (b)的SEM图像

    Figure  4.  SEM images of SiO2 (a) and SiO2@PDA (b)

    图  5  反式-1, 4-聚异戊二烯(TPI)形状记忆复合材料的DSC曲线:(a)结晶过程;(b)熔融过程

    Figure  5.  DSC curves of trans-1, 4-polyisoprene (TPI) shape memory composites: (a) Crystallization; (b) Melting process

    图  6  TPI形状记忆复合材料的XRD图谱

    Figure  6.  XRD patterns of TPI shape memory composites

    图  7  TPI形状记忆复合材料的TG分析曲线

    Figure  7.  TG analysis of TPI shape memory composites

    图  8  TPI形状记忆复合材料的力学性能:(a) 应力-应变曲线;(b) 拉伸强度及断裂伸长率

    Figure  8.  Mechanical properties of TPI shape memory composites: (a) Stress-strain curves; (b) Tensile strength and elongation at break

    图  9  TPI形状记忆复合材料的冲击强度测试

    Figure  9.  Impact strength test of TPI shape memory composites

    图  10  TPI形状记忆复合材料的DMA曲线

    Figure  10.  DMA curves of TPI shape memory composites

    图  11  TPI形状记忆复合材料的形状记忆特性曲线

    Figure  11.  Shape memory characteristic curves of the TPI shape memory composites

    表  1  反式-1, 4-聚异戊二烯(TPI)复合材料的命名

    Table  1.   Naming of trans-1, 4-polyisoprene (TPI) composites

    Sample TPI/g SiO2/g SiO2@PDA/g
    Neat TPI 100
    TPI/SiO2-0.5 g 100 0.5
    TPI/SiO2@PDA-0.5 g 100 0.5
    TPI/SiO2@PDA-1.0 g 100 1.0
    TPI/SiO2@PDA-1.5 g 100 1.5
    TPI/SiO2@PDA-2.0 g 100 2.0
    下载: 导出CSV

    表  2  TPI复合材料的DSC测试数据

    Table  2.   DSC test data of TPI composites

    SampleXc/%Tm/℃Tc/℃Hm/(J·g-1)
    Neat TPI14.0340.087.6226.21
    TPI/SiO2-0.5 g13.7740.331.0625.72
    TPI/SiO2@PDA-0.5 g14.7641.185.2727.58
    TPI/SiO2@PDA-1.0 g15.2841.687.3228.55
    TPI/SiO2@PDA-1.5 g15.8042.368.8929.53
    TPI/SiO2@PDA-2.0 g15.2041.465.5328.40
    Note: Xc, Tm, Tc and ∆Hm—Crystallinity, crystallization temperature, melting temperature and melting enthalpy of TPI shape memory composites, respectively.
    下载: 导出CSV

    表  3  TPI形状记忆复合材料的TG测试数据

    Table  3.   TG test data for TPI shape memory composites

    SampleT5%/℃Tmax/℃W600/wt%
    Neat TPI277.13371.212.39
    TPI/SiO2-0.5 g310.36372.534.62
    TPI/SiO2@PDA-0.5 g318.93373.685.52
    TPI/SiO2@PDA-1.0 g323.88375.385.75
    TPI/SiO2@PDA-1.5 g326.46379.069.12
    TPI/SiO2@PDA-2.0 g320.95376.456.39
    Notes: T5% and Tmax—Initial degradation temperature and maximum degradation temperature of TPI shape memory composites; W600—Mass fraction of residual carbon at 600℃.
    下载: 导出CSV

    表  4  TPI形状记忆复合材料的形状记忆测试数据

    Table  4.   Shape memory test data for TPI shape memory composites

    SampleRf/%Rr/%
    Neat TPI98.798.8
    TPI/SiO2-0.5 g98.398.1
    TPI/SiO2@PDA-0.5 g98.698.5
    TPI/SiO2@PDA-2.0 g98.597.9
    Note: Rf and Rr—Shape fixation rate and shape recovery rate of TPI shape memory composites, respectively.
    下载: 导出CSV
  • [1] CHAN B Q, LOW Z W, HENG S J, et al. Recent advances in shape memory soft materials for biomedical applications[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10070-10087.
    [2] XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials,2021,33(6):2000713. doi: 10.1002/adma.202000713
    [3] 赵先锋, 汤朋飞, 史红艳. 4D打印复合软材料力学性能预测研究进展[J]. 复合材料学报, 2021, 38(6):1651-1668.

    ZHAO Xianfeng, TANG Pengfei, SHI Hongyan. Research progress on prediction of mechanical properties of 4D printing soft composite[J]. Acta Materiae Compositae Sinica,2021,38(6):1651-1668(in Chinese).
    [4] 李文兵, 魏婉婷, 李金嵘, 等. 形状记忆聚合物纤维及增强复合材料的研究进展[J]. 复合材料学报, 2022, 39(1):77-96. doi: 10.13801/j.cnki.fhclxb.20210729.005

    LI Wenbing, WEI Wanting, LI Jinrong, et al. Research progress of shape memory polymer fibers and reinforced composites[J]. Acta Materiae Compositae Sinica,2022,39(1):77-96(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210729.005
    [5] TIAN M, GAO W, HU J, et al. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6426-6435.
    [6] JIA X, SHEN B, ZHANG L, et al. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation[J]. Chemical Engineering Journal, 2021, 405: 126927.
    [7] WANG E, DONG Y, ISLAM Z, et al. Technology, effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites[J]. Composites Science and Technology,2019,169(5):209-216.
    [8] LIU Y, GUO Y, ZHAO J, et al. Technology, carbon fiber reinforced shape memory epoxy composites with superior mechanical performances[J]. Composites Science and Technology,2019,177(16):49-56.
    [9] JIAN W, WANG X, LU H, et al. Molecular dynamics simulations of thermodynamics and shape memory effect in CNT-epoxy nanocomposites[J]. Composites Science and Technology,2021,211(4):108849.
    [10] XU L, FU Y, DU M. Investigation on structures and properties of shape memory polyurethane/silica nanocompo-sites[J]. Chinese Journal of Chemistry,2011,29(4):703-710. doi: 10.1002/cjoc.201190144
    [11] SHARMA A, SINGHOLI A. Effect of nanosilica on shape memory and mechanical characterization of polylactic acid wood composite[J]. Polymer Composites,2021,42(5):2502-2510. doi: 10.1002/pc.25995
    [12] FU Y W, ZHANG Y Q, SUN W F, et al. Functionalization of silica nanoparticles to improve crosslinking degree, insulation performance and space charge characteristics of UV-initiated XLPE[J]. Molecules,2020,25(17):3794. doi: 10.3390/molecules25173794
    [13] LI X T, WANG H T, ZHANG Z W, et al. Preparation and mechanical properties of poly(γ-benzyl-glutamate) modified nano-silica reinforced polyurea composites[J]. Polymers for Advanced Technologies,2021,33(1):270-279.
    [14] ZHANG C, LI L, XIN Y, et al. Development of trans-1, 4-polyisoprene shape-memory polymer composites reinforced with carbon nanotubes modified by polydopamine[J]. Polymers,2022,14(1):110.
    [15] TENG J, WANG Z, LIU J, et al. Thermodynamic and shape memory properties of TPI/HDPE hybrid shape memory polymer[J]. Polymer Testing,2019,81:106257.
    [16] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress-strain properties of vulcanized or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics-determination of izod impact strength: GB/T 1843—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] CHEN Q T, YANG B, DING M Y, et al. Enhanced physical, mechanical and protein adsorption properties of PVDF composite films prepared via thermally-induced phase separation (TIPS): Effect of SiO2@PDA nanoparticles[J]. European Polymer Journal,2020,140:110039. doi: 10.1016/j.eurpolymj.2020.110039
    [19] QIU Z, WANG J, YANG K, et al. Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano: Silicon dioxide modified by polydopamine[J]. Journal of Applied Polymer Science,2017,134(26):45004.
    [20] YANG H, PI P H, YANG Z R, et al. Design of a superhydrophobic and superoleophilic film using cured fluoropolymer@silica hybrid[J]. Applied Surface Science,2016,388:268-273. doi: 10.1016/j.apsusc.2016.01.099
    [21] QIAN Y R, FENG J H, FAN D W, et al. A sandwich-type photoelectrochemical immunosensor for NT-pro BNP detection based on F-Bi2WO6/Ag2S and GO/PDA for signal amplification[J]. Biosensors and Bioelectronics,2019,131:299-306. doi: 10.1016/j.bios.2019.02.029
    [22] ZHU L, LU Y, WANG Y, et al. Preparation and characterization of dopamine-decorated hydrophilic carbon black[J]. Applied Surface Science,2012,258(14):5387-5393. doi: 10.1016/j.apsusc.2012.02.016
    [23] WU Y L, LU J, LIN X Y, et al. Bioinspired synthesis of SiO2/PDA-based nanocomposite-imprinted membranes with sol-gel imprinted layers for selective adsorption and separation applications[J]. Physical Chemistry Chemical Physics,2018,20(23):15775-15783. doi: 10.1039/C8CP02068J
    [24] WANG Z, REN R, SONG H, et al. Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives[J]. Applied Surface Science,2018,428(15):630-639.
    [25] ZHANG J, XUE Z. A comparative study on the properties of eucommia ulmoides gum and synthetic trans-1, 4-polyisoprene[J]. Polymer Testing,2011,30(7):753-759. doi: 10.1016/j.polymertesting.2011.06.010
    [26] KRÓL A, POMASTOWSKI P, RAFIŃSKA K, et al. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism[J]. Advances in Colloid and Interface Science,2017,249:37-55. doi: 10.1016/j.cis.2017.07.033
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1402
  • HTML全文浏览量:  585
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-05-31
  • 录用日期:  2022-06-03
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回